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The wake generated by a moving ship may extend for many tens of kilometers in the

open ocean, and can be remotely sensed. Through indirect methods, the detection

I of a ship and its related characteristics, is generally obtained by measuring the ship

generated waves or their spectra. From the viewpoint of remote sensing, interesting

problems exist related to the detection of a ship's presence and the acquisition of

dynamic and static information about it. This problem can be divided into two

basic aspects. First, how to obtain a moving ship's wave spectra from remotely

sensed images, and second, how to extract the desired ship information from the

imaged wave spectra. This thesis concentrates on the latter aspect, in particular,

how to estimate a moving ship's direction, speed, length and hull shape from its wave

spectra.

I The extraction of ship information is based on the relations of the ship's wave

spectra, wave amplitude function and hull geometry. In this thesis, an analytic rep-I
I



resentation of wave elevation is introduced with the use of the Hilbert transform,

and the derivation is given for the calculation of the wave amplitude function from

the Fourier spectrum of one and two dimensional complex-valued wave elevations.

Methods and formulas are given for estimating a ship's speed and direction from the

spectrum of a two-dimensional wave patch, a single wave cut or two wave cuts. A

theoretical model of the wave amplitude function is developed, and three methods I
are designed for the estimation of a ship's length from the wave amplitude func-

tion. Under the assumption of thin-ship theory, an inversion technique to predict

the geometry of a ship's hull from the wave amplitude function or its magnitude is de- I
veloped through the application of a spectral method and the constrained maximum

likelihood method. Examples comparing theoretically calculated data and tow tank

experimental data are given to demonstrate the methods developed and estimate

performance.
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CHAPTER I

* INTRODUCTION

I

I Although a ship's length is bounded within a range of values, the wake it gener-

ates in the open ocean may extend for many tens of kilometers. Through indirect

methods, the detection of a ship and its related characteristics, is generally obtained

by measuring the ship generated waves or their spectra. From the viewpoint of re-

mote sensing, interesting problems exist related to the detection of a ship's presence

and the acquisition of dynamic and static information about it. For example, a

ship's velocity, size and hull shape are desired characteristics. Figure 1.1 illustrates

a scheme for obtaining this information about a ship from remotely sensed images.

I This problem can be divided into two basic aspects, one is how to obtain a moving

ship's wave spectra from remotely sensed images, the second is how to extract the

desired ship information from the wave spectra. This work concentrates on the latter

U aspect, in particular, how to estimate a moving ship's direction, speed, length and

* hull shape from its wave spectra.

Ship generated surface gravity wave patterns can be remotely detected using

several techniques, including visible photography, infrared sensing and microwave

radars. Several radar remote sensing techniques can be used to estimate ocean surface

directional wave properties, for example, the Ocean Wave Spectrometer (ROWS), theI
!1



2

I
[remote sensing images

intenity spectra

II

ship speed and direction ship length wave amplitude function U
Sextraction of ship bullgeometry inf o]

Figure 1.1: A scheme to extract ship information from remote sensing images.

Three-Frequency Airborne Radar (TRIFAR) and Synthetic Aperture Radar (SAR)

[1]. Vesecky et al. have studied remote sensing of ocean waveheight spectrum using

SAR [21-[41, and Monaldo et al. have studied the transformation of surface wave

slope- and height-variance spectra from radar images [5] in recent years. These

techniques may find their applications in the detection of ship characteristics from I
remotely sensed images. Ship wave spectra have distinct features which are different

from those of ambient ocean waves. Tuck et al. have studied the Fourier spectra of

real ship wave elevations and indicated the possibility of utilizing this information to I
estimate ship speed [6]. The estimation of ship hull geometry information from ship

waves or their spectra can be considered as an inverse Kelvin wake problem, and has

been explored by Kuhn, Newman et al. recently [7]-[9]. I
Since the inverse Kelvin wake problem is relatively new, little directly related

published work exists. The study of this problem will naturally rely, to a great

extent, on the existing theories and results on the forward Kelvin wake problem, i.e.,

I
I
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predicting the wave field due to the geometry of the ship. The forward problem has

been studied for several decades with the desire to predict the ship wake and reduce

U the ship wave resistance to a ship [15]-[28].

Mathematically, the inverse Kelvin wake problem has some characteristics similar

to inverse problems in other areas. Thus, the methods developed in those areas will

I be helpful in finding solutions of this inverse Kelvin wake problem [46]-[54].

In this work, the study of the estimation of a moving ship's speed, direction and

hull geometry characteristics from its wave spectra is based on the recognition of

I the relations among the wave spectra, the wave amplitude function and the ship

hull shape. On the spectrum diagram the wave number distribution contains the

ship's speed information, the position of spectrum loci contains the ship's direction

information, and the magnitude of the wave spectra contains the ship's hull geometry

information.

In the following, Chapter 2 and Chapter 3 serve as the theoretical foundation of

the study. Based on basic ship wave theory and Fourier theory, Chapter 2 discusses

ship generated free waves and their Fourier spectra. An analytic representation of

I wave elevation is introduced with the use of the Hilbert transform. The concept of

complex wave elevation with this analytic representation is helpful in simplifying the

derivation of of the wave amplitude function from the wave spectra.

In Chapter 3, the derivation is given for the estimation of the wave amplitude

function from the spectra of one and two dimensional complex-valued wave eleva-

tions. The spectrum loci on a spectrum diagram, a distinct characteristic of ship

wave spectra, are important for the estimation of the ship speed and direction, and

thus are mathematically described. The formulas to calculate the wave amplitude

function are given in detail. The effects of sampling intervals on the resolution of

U
I
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wave angles and the wave amplitude function, and the relation between the sampling

intervals for a real ship and its model must be understood and considered in tow tank

experimental studies or other practical applications. Thus, one section is included I
for these contents.

With the fundamentals and formulas given in Chapter 2 and Chapter 3, the

following chapters develop the theory and methodology for the estimation of a ship's I
velocity, length and hull surface shape. Chapter 4 first shows the discovery of the

presence of a moving ship in an ambient random wave field through a simple example.

The methods and formulas for calculating a ship's speed and direction from the

spectrum of a two-dimensional wave patch, a single wave cut or two wave cuts are

then discussed in detail. The examples with theoretically calculated data and tow

tank experimental data are given to demonstrate the methods and the estimation

performance.

In Chapter 5, a theoretical model of the wave amplitude function is developed I
for the estimation of a ship's length from the wave amplitude function. This model

explicitly reveals the periodic character inherent in the real and imaginary part and

even in the magnitude of the wave amplitude function. It also shows the relation be-

tween a ship's length and the periodicity, and the effects of the bow and stem's shape

on the periodic character. With this understanding, three methods, the spectrum

method, zero-crossing method and frequency demodulation method, are designed

to estimate ship length. Examples are given for each method and the results are

compared.

Chapter 6 develops a technique to extract a ship's hull geometry shape from

the wave amplitude function or from its magnitude under the assumption of the

thin-ship theory. The spectral method is used in converting the continuous inverse I
I
I
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problem to a discrete problem, and the selection of basis functions are discussed.

The ill-condition of matrices in the resulting equations, noise in input parameters

and the wave amplitude function have severe effects on the solution as analyzed in the

chapter. To reduce the effects to a minimum, Bayes estimation theory is applied to

the inverse problem, and the constraints are considered in both linear and nonlinear

cases. The maximum likelihood method with constraints is found to be especially

useful in the examples of mathematically well-defined hulls and that of a sea-going

tug, the USS Quapaw.

I The final chapter, Chapter 7, summarizes the research conducted in this study

and gives some recommendations for further efforts.

I
I
I
I
I
I
I
I
I
I
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CHAPTER II 3

SHIP WAVE SPECTRA I
I

The extraction of ship information is based on the relations of the ship's wave U
spectra, wave amplitude function and hull geometry. The wave spectra have rela-

tions with wave elevation and slopes through Fourier transform. Ship wave numbers

contain the desired ship speed information, the position of spectrum loci in spatial

frequency space or wavenumber space contains the ship direction information, and

the magnitude of wave spectra contains the hull geometry information.

In this chapter, an analytic representation of wave elevation is introduced to

simplify the mathematical manipulation in wave spectra later, and then the relation

between elevation and slope spectra is discussed for stationary ship wave motions. I

2.1 Ship Wave Elevation and its Analytic Representation I

Propagating waves and the signals they carry can be modeled as functions of

space and time, and they can be analyzed by using multidimensional Fourier trans-

form methods. For general cases, if s(x, t) represents a signal that is a function of I

spatial position x = (z, y, z) and time t, and S(k, w) represents its four-dimensional

wavenumber frequency spectrum, then s(x, t) and S(k, w) can be expressed in terms

6
I

6
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I z

I Y
I/

I o/

3 Figure 2.1: Reference coordinate system. The mean water surface is at z -0.

of each other in the following equations [10] :

I S(k,w) =_LJ s(x,t)e-(wkX)dxdt (2.1)

s(x,t)=- S(k,w)eJ( -kx) (2.2)

where j = V'-11, and k -x represents the inner product of the wavenumber k and

the position vector x. The space-time signal s(x, t) can be considered as the su-

perposition of numerous elemental propagating waves exp {j (w - k. x} weighted by

S(k, w).

3 In the problems below, the wave field is generated by a moving ship in deep water

and it can be described as a three-dimensional problem, i.e, x and y in space and t

I in time. Additionally, the assumption of linearized free-surface boundary condition

is made. Now, consider a reference system moving with the ship in the positive

x-direction with speed U, as shown in Figure 2.1, then the wave elevation 77(x, y, t)

I can be expressed in the following form [14]

I7(x, y, t) = ReJ00 &. j dO A(w, 0) -jK(coeO+ysO)+j(w-KUco)t} (2.3)I

I
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Here, 0 is the wave angle, A(w, 0) is called the wave amplitude function, and K(W)

is the wave number corresponding to a given frequency w in accordance with the

dispersion relation for infinite depth

K = - (2.4)

g

where g denotes the acceleration of gravity. For real problems, the wave elevation is

always real; thus, the operation, Re{.}, to take the real part is used in (2.3).

It will be more convenient, however, if the real operation in (2.3) can be left out in I
the complicated mathematical manipulation. For this purpose, the complex-valued

wave elevation is introduced here with the use of the Hilbert transform. The Hilbert

transform of a real-valued signal X(t) is another real-valued signal, which is defined

by the convolution integral of x(t) and - [11]. That is, if the Hilbert transform of

X(t) is denoted by (t), then

oI(t- T) ". (2.5)

An analytic signal *(t) associated with X(t) is defined by

(t) = x( t ) + j (t) (2.6)

and it can be expressed with a magnitude function a(t) and a phase function p(t),

where a(t) describes the envelope of the original function x( t ), and W(t) describes

the instantaneous phase of X(t). Thus, (t) can be written in the form

j(t) = a(t) J(t) (2.7)

where a(t) 
= [x(t) + (t)] 2

Wa(t) = tan-'[ V()].

'X(t)

I
I
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A useful property of an analytic signal j(t) is the Fourier transform relations

among x(t), (t) and (t). Let X(f), X(f) and X(f) be the Fourier transforms of

I x(t), (t) and *(t), respectively. Then, it can be proved that

k(f) = -j sgn(f) X(f) (2.8)

2X(f) forf>0

Ik(f) = [1 + sgn(f)] X(f) X(f) for f = 0 (2.9)

10 for f< 0

where sgn(f) is a sign function which is defined as agn(f) = 1 if f > 0, sgn(f) = 0

I if f = 0 and sgn(f) = -1 if f < 0. From these relations, X(f) and X(f) can be

obtained once X(f) i: available.

Now, consider two analytic signals associated with the real signals

U fl(r) = Re{ Ae - j "} (2.10)

f 2(r) = Re{ Aejn ' } (2.11)

where A is complex and independent of r, and 11 is real. With the help of the

following Hilbert transform relations of sine and cosine with constants cl and c2:I
R{ cos(cr + c 2)} = sin(clr + c 2)

I 7'/{sin(cr + c2 )} - -cos(clr + c2 )

I the analytic signals of fi(r) and f 2(r) are given by

I f~1(,r) = , A-J"fr l> (2.12)

Ae - j f"- for fl < 0

I Aejnr for fl > 0 (2.13)
A*e - 0 " for D < 0

Ik
I
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where A* denotes the conjugate of A.

By applying the above concept for an analytic signal to the wave elevation given

in (2.3), the complex-valued wave elevation, i.e., the analytic representation of the I
wave elevation can be derived. In terms of formula (2.12), the analytic representation

of 9(x, y, t) is now given by

(x,y,t) = 7(x,y,t)+ ji (x,y,t) 

P00 V

= jrL dO A*(w, 0) ejK(zcos+y sin)-j(w-KU cose)tJO 2-

+/J&w 2 dO A(w, 0) -jK(zco@ O+yinO)+j(w-KUcos9)t (2.14)

where the Hilbert transform is taken with respect to z. The above analytic repre-

sentation of wave elevation and the property of the Hilbert Transform in (2.9) will

be helpful in the following mathematical derivation. I

2.2 Spectra of Wave Elevation and Slope 3
Equation (2.3) describes a non-steady wave motion, that is, the wave elevation

changes not only with the spatial position but also with time. If the motion is steady

state in the reference system moving with the ship, however, expression (2.3) must I
be independent of time. Thus,

KUcos0-w = 0 (2.15)

and the phase velocity of each admissible wave component can be obtained from

(2.15), I
V = Ucos . (2.16)

K

I
I
U
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3 From (2.4) and (2.15), the wave number K(O) can be related to the ship speed and

wave angle 0 in the form

Ig( )_U2_o (2.17)

The restriction (2.15) can be used to eliminate the variable t. By retaining the wave

angle 0 and by noting that (2.15) and (2.16) require that cos 0 > 0, the free-wave

distribution of a given ship for the deep-water case now can be expressed from (2.3)

I in its real form

I ?(z, y) = Re{2 A(O)e-JKx(O)-+K-(O)'ldO} (2.18)

where

K.(O)- K(O)cos0

K(O) = K(O)sin&0.

Note that 0 must now range from - to z because of the requirement cos 0 > 0.

I The analytic representation of wave elevation now becomes

I Y)= A- (0) ej[K-()+K (0)ldO (2.19)

where the Hilbert transform is taken with respect to x. Additionally, the wave

elevation spectrum is given for the real wave elevation by

H(u, v) = .)'{ :,(x, y) } = L r('.,y)-J 2 "(1+"I)dxdy (2.20)

and for the complex wave elevation by

H(,,,,) = F{ (z, y) } = L f (x,y)e-J2'K(+vY)dxdy (2.21)

where u and v are the spatial frequencies associated with x and y, respectively.I
I
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The relation between the wave elevation and its spectrum has been now estab-

lished through Fourier relations. Theoretically, thus, the ship information can be

recovered from either the wave elevation itself or its spectrum. In some real situ-

ations such as in remote sensing, however, the available information on ship waves

may not be the wave elevation or its spectra but wave slopes or the slope spectra.

Therefore, a brief investigation of the relations among them is made below.

The surface wave slope vector i is defined by the gradient of the wave elevation,
i.e.,

i(x,y) = V = Vx',y)& + q(x,y) (2.22) I

where V denotes the gradient operation, i and denote the unit vector in x- and

y- directions, and q. and , are the partial derivatives of wave elevation with respect

to x and y, respectively. In terms of the properties of Fourier transform, the spectra

of the slope components are given by 3
fIt(u, v) = ,{ 7 ,(x, y) } = j27ruH-(u, v) (2.23)

HI(u,v) = .'{O,(x,y)}=j2rvH(u,v) (2.24)

and the vector slope spectrum is given by

S(u, v)= -F{ i(x, y) } = j2r(,i + v )H(u, v) (2.25) I

A slope component in any direction fi, denoted by in(x, y), can be obtained from the 3
directional derivatives of wave elevation, that is,

5,(xy) --- f. i~, y)(2.26)

Thus, its spectrum is 9

S,(u,v) = fi. F{i(x,y) } = j2ir[,i. (u& +v )]H(u,v) (2.27) I
I
I
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3 In terms of the above relations, slope spectra can be obtained once elevation spectra

are available. Similarly, elevation spectra is also obtainable from slope spectra, except

I at zero frequency since the denominator will be zero at zero frequency . The zero

frequency component of the elevation spectra represents the average value of wave

elevation, and it is not very important in many real situations. Because of the

3 relation between slope spectra and elevation spectra, the discussion in later chapters

will focus only on the elevation spectra.I
I
I
I
I
I
I
I
I
I
I
I
I
I
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CHAPTER III

ESTIMATION OF THE WAVE AMPLITUDE

FUNCTION FROM WAVE SPECTRA U
I
I

In this chapter, ship wave spectrum patterns are discussed and the relationship

between the wave amplitude functions and wave spectra is derived. As stated in I
the last chapter, the ship generated stationary wave elevation and its spectrum are

entirely dependent on wave numbers and the wave amplitude function. Generally

speaking, the wave elevation or wave spectra can be directly measured or remotely

sensed, but the wave amplitude function can not. As will be seen in the following

chapters, however, dynamic and static information about a moving ship, such as

speed and hull geometry, is strongly reflected in wave numbers and the wave ampli-I

tude function. Thus, recovering the wave amplitude function from wave spectra is

an important procedure for obtaining this information. I
The wave pattern analysis, especially the estimation of the wave amplitude func-

tion, also plays an important role in the ship wave resistance analysis because of its

direct relation with wave resistances. For the purpose of analyzing the ship wave I
resistances, different derivation methods to calculate the wave amplitude function

were introduced in the last twenty years [15]-[22]. Ship wave patterns not only con-

tain the information that can be extracted to estimate ship wave resistances, but

14 I
I
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also contain other useful ship information, thus, ship wave pattern analysis is also

an important means for remotely sensing ship information [6].

3 In this chapter, the explicit and succinct expressions for the wave amplitude

function are established from one- or two-dimensional wave spectra based on the

analytic representation of wave elevation. The distinct characteristics of ship wave

3 spectra can be observed in these derivations, and they become the basis for the

estimation of ship speed and direction in the next chapter. The effect of sampling

intervals on the wave angle and wave amplitude function is also discussed for practical

3 use of this formulas. In this chapter, the first section discusses two dimensional wave

fields; the second section discusses one dimensional wave cuts; and the final section

I discusses the effect of sample intervals.

3 Before discussing the estimation of the wave amplitude function, it is helpful to

review briefly some formulas about the 6 function, which can be found in reference

* [41],

* 6(x) = 6(-X) (3.1)

(X,y) = 6(x)b(y) (3.2)

3 f(x)b(z - a) = f(a)b(x - a) (3.3)

3 J 6(x - y)b(y - a)dy = 6(x - a) (3.4)

I 6 (q(x)) = E 1 b(x - xj) (3.5)
, lq'(x,)l

U where xj is the root of q(x) = 0, and its derivative q'(Xj) 0 0.

I
I
I
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3.1 Estimation from 2-D Wave Fields I

As seen in Chapter 2, the ship generated surface wave can be described as a 3
two-dimensional (2-D) wave field. The two-dimensional wave or spectrum data can

be obtained either in tow tank experiments [23], [30], or possibly by remote sensing

methods [5], [31]. The most distinct signature contained in ship wave spectra, dif-

ferent from general ocean wave patterns, is the locus in the spatial frequency plane.

The first subsection below discusses the properties of the wave spectra. The second

subsection discusses the relation between the wave amplitude function and the wave

spectra, the discrete forms for calculating the wave amplitude function and the effect U
of truncated errors.

3.1.1 Loci of Ship Wave Spectra 1

In this subsection, discussion starts from the complex-valued wave elevation. 3
From Chapter 2, a stationary wave elevation is given by

q(x,y) = 17(x,y) + j ) = L A-(O)eJ[K(8)z+K(O) ]dO (3.6)
2

where the wave angle 0 ranges from -2 to M and the wave amplitude function A(O) I

is complex. 3
To obtain the wave elevation spectrum, the Fourier transform of the wave eleva-

tion is taken and it follows that I

ft(u, v) = 0 L (, Y)e-j 21(-+y)dXdy

= - *A(O){j - e-2r"[- wft.u)+("-5f )Y ]dxdjdO

1 1=*O~~ - K () )(v - AI(O)dO (3.7)

2MA66 7r 21r

I
I
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Now, let

g1(o) - K.(O) (3.8)U 27r
92( 0 ) v _ Ky(0) (3.9)

2wr

and let 01 and 02 be the roots of gi(0) and g2(0), respectively. Then, in terms of the

36 formulas, (3.7) becomes

1 (u~~v) = f_' "A (0)6( - 01) b(0 - 02) - ', a'
fI(u, V) =*1 g--d

A(0 1) (2
-(01) g - 02) (3.10)[g (O1)1 l (02)1

where g, and g2 represent the derivatives of gi and g2, respectively, with respect to

0. In terms of (3.10), thus, the wave spectrum Ht(u, v) is combined with a number

of impulses with intensity A*(8k) at position 01 = 02. Here, 01 or 02 is solved

from gi(o) = 0 and g2(0) = 0, that is,

U K(G) (3.11)
2v

1 _ Ky(O) (3.12)

2r

This set of parametric equations represent a locus on the (u, v)-plane, or the wave

spatial frequency plane and describe the distribution of ship wave components on

this plane. That is, only the spectrum values on this locus are non-zero. Besides,

3the spatial frequencies u and v in the domain of the Fourier transform are consistent

very well with the ship wave numbers, K__ and Ky, in the x- and y- directions.

UThus, the locus on the spatial frequency plane contains ship information.

The wave angle 0 and the wave number K(O) can be expressed as functions of u

and v. By solving (3.11) and (3.12), it follows that
0( = tan-) (3.13)

U1
1
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Figure 3.1: Loci of wave spectra in the spatial frequency (u,v) plane for different

ship speeds U.

K(0) - - 27r(u + V  (3.14)

where 
,I

o= A 9(3.15)

The locus of ship wave elements can be also expressed by one equation. For this,

canceling 0 in (3.13) and (3.14), it follows that

u4 - (-)2 (u 2 + v 2 ) = 0 (3.16)

The loci on the (u, v) plane for different moving speeds are plotted in Figure 3.1.

As shown in the figure, the wave components are located in the first and fourth I

quadrants of the (u, v) wave spatial frequency plane since the wave angles 0 are in

-29 !]and u>O.

____ ___ ____ ___ ____ ___ ____ ___ _ I
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3.1.2 Calculation of the Wave Amplitude Function

I In this subsection, an explicit and succinct expression for the wave amplitude

function is established from two-dimensional continuous or discrete wave spectra.

I Since the wave spectrum is combined with the b functions as shown in (3.10),

it is possible to obtain the expression of A(O) by integrating both sides of (3.10),

resulting in

S(-) = (911If(u,v)d 2 . (3.17)A'(Ox = L' (0)11f !()1/.

I However, this result complicates further manipulation, because the integral is with

3 respect to 02 and the integrand is a function of u and v, although there is the relations

among u, v and 02.

I An alternative method is to start the derivation directly from (3.7) and integrate

with respect to u since fI(u, v) is a functin of u and v. In terms of the properties

of the 6 function, (3.7) can be written as

I ff(u,v) = A*(Oo)f 1 6(u L-2)r K )2 " (3.18)

I where O0 = Oo(u,v) satisfies (3.11) and (3.12). In order to simplify this expression,

* let

R(O) = K(O) sin0

= - OT ToS2 0

then (3.18) becomes

H(u, v) = A'(o) f_(u - R cot 0)b(v - R)dO

* (0o) L ()b(u - Rh(R))b(R - v)dR

= -(o6(u - vh(v)) (3.19)I

I
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where h(R) '- cot 0 and the derivative R' is given by

(0) = R(O) = K 1 + sin 20 (3.20)
dO 2z cos3O 0

Note that u - Rh(R) = 0 and R - v = 0 are equivalent to (3.11) and (3.12); thus,

the last step in (3.19) is valid. Here, R h(R) is given by

Rh(R)= RcotO I

= (Ko + Ko 16ir2 R2) (3.21) I

To cancel the 6 function on the right side of (3.19), integrate both sides of (3.19)

with respect to u. The result is

L fH(u,v)du = A(o) (3.22)
R'(Oo)

Since 11(u, v) is combined with 6 functions as shown in (3.19), it is possible to write

ft(u, v) into the 6 function with its intensity Hnit(u, v), i.e., fr(u, v) = flt~t(u, v)(u-

vh(v)). Thus, the integral of the left hand side of (3.22) is equal to fint(vh(v), v), and

it represents the intensity of the spectrum on the locus. Hence, the wave amplitude I
function can be written from (3.22) in the form

A(O(u,v)) = R(O(uv))ft*t(uv)

1 K1+sin2O(u,v ) -
2= cos 3 6(u,v) H!,(u, v) . (3.23)

Note that u is retained, and O's subscript "0" is omitted in (3.23) for simplicity, but

remember that u and v must be on the locus, that is, must satisfy (3.11) and (3.12).

The wave amplitude function is an even function of the wave angle when the

ship wave is symmetric in the y-direction. This can be proved in terms of the above

relations. From (3.13), the wave angle is a odd function of v, i.e., O(u, v) = -O(u, -v).

When the ship wave is symmetric in the y-direction, that is, 77(z, y) = rl(x -y) the I
I



I 21

wave spectrum is even with respect to v, i.e., H(u, v) = H(u, -v), according to the

Fourier transform properties. Thus, Hr(u, v) = Ht(u, -v) too. It is found from (3.23)

that the amplitude function A(O) is even with respect to 0, that is, A(O) = A(-O),

when the wave elevation is even with respect to y. For many ship types, the hull is

symmetric with respect to the ship central plane, thus the ship wave is symmetric

I with respect to the centerline, and the wave amplitude function is even with respect

to wave angles.

There are different ways of obtaining the wave spectrum in real applications. One

I way is from the wave elevation or slopes, that is, the wave spectrum is calculated

by taking the Fourier transform of the observed wave data. Another possibility is to

obtain the wave elevation spectra indirectly. For instance, the wave spectrum can be

estimated from radar images. In practical applications, the data are discrete; thus,

the discrete formula is useful for real situations and a discussion is given below.

To derive the discrete formulas, some definitions of discrete variables are given

first. If we let nj and n2 be the discrete forms of z and y, and Ax and Ay the

interval sizes in the z- and y-directions in the spatial domain, and let k, and k2

I be the discrete forms of u and v , and Au, Av the interval sizes in the u- and v-

directions in the spatial frequency domain, then x = njAx, y = n2 Ay, u = k1Au,

and v = k2Av.

I Under the assumption that q(x, y) is very small outside the range of -I < x < LL

and - - y _ AL, the infinite-range Fourier transform can be approximated by its

Fourier transform with finite ranges L1 and L 2 in the z- and y-directions, i.e.,

U H(u, v) = , (T, y)PCJ 2 ("-+")dXdy

I Lt L_ _ t(x, y)e-J 2"("=+)dXdy (3.24)

I
I
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After discretization, (3.24) can be expressed in the form

,,k1 k2  xy! -Li_  Z-4  .ki, 1  k2n2

t(k,, k2) ;.e -AY E E ,(ki, k2)exp[-j21r(-- -n + -2), (3.25)s, I
n 1=ff N1-M Ii N

22--
ki = -L ,..., -1, 0, 1,2,., 1

k2 = _ L101 2,. -1I
2 ""2

where N and N 2 are the number of data points in the x- and y- directions.

The right hand side of (3.25) can be computed using powerful FFT algorithms.

Once the discrete Fourier transform of wave elevation has been found, the algorithm I
for recovering the wave amplitude function can be established from (3.23) in the

discrete form

A((k, k2)) = R'(G(k1, k2))fI*(k, k2)Au U
- Ko 1+sin2(kl, k2) fIr(k,k 2)Au (3.26)

where K0 = , Au = - and 0, k, and k2 satisfy

0(ki, k2 ) = tan-' () (3.27)

K() I o(.8
(AUkl) 2 +(Avk 2)2 = [-K-e] = (KO2 . )2 (2

2~r (21rcos:2) 2 (.83

That is, the spectrum values can only be taken from those on the spectrum locus.

Equation (3.26) does not contain the summation operation because there is only one

non-zero value of Hr(u, v) for each v. Once the discrete spatial frequency spectrum

H(k1 , k2) of the ship wave elevation q(x, y) is obtained, the ship wave amplitude

function can be extracted from it.

In practical cases, the real-valued ship wave elevation r/(nl, n2) or its spatial

frequency spectrum H(kj, k2) is available. According to the definition of /(x, y)

I



I 23

and the properties of the Hilbert transform, the spectra H(ki, k2) and Hl(k, k2) are

related by

2H(kj,k 2) for k, > 0

-(k 1 ,k 2 )= H(k,k 2) for kl = 0 (3.29)

0 for k,<0

Thus, the wave amplitude function also can be expressed by the spectrum H(ki, k2),

* that is,

A(O(ki, k2)) = K°I +sin 2 (k1,k2) H.(kl, k2)Au (3.30)
ir cos3 O(k1, k2)

with k, > 0. Note that the value at k, = 0 is not considered in the above formula,

I since when k, = 0, 0 = ±z and cos 0 = 0. This will result in the infinity of

A(O(k, k2)).

In the above discussion, it has been assumed that the truncation error caused by

I h the finite data length in the z- and y- directions can be neglected, and thus the

FFT algorithm is used to obtain the wave spectrum, and then the wave amplitude

function is recovered from it. In some situations, however, the truncation error is too

large to be neglected. In this case, the wave amplitude function may be recovered

by using an inversion technique. It is assumed that the truncated wave elevation is

I represented by

??T(X, Y) = i (z,y)gT(X, Y) (3.31)

where the two-dimensional gate function gT(z, y) is defined as

1 for -. &L < z< -- & < y:5 k

IgT(xy) 2 -. (3.32)
0 otherwise

Its Fourier transform is given by

GT(U,V) = LjL 2S.(7rLtu)S,(rL2v) (3.33)

I



24

where So( ) _ sin / is called the sampling function. By using the convolution I
property and the result in (3.7), the spectrum of the truncated wave elevation in

(3.31) is given by

HT(U, V) = L1 L L2 A*(O)S.(rL,(u - -"2 6 ))S.(rL2 (v - K4(O)))dO. (3.34)
2132 27r

Thus, if HT(U, v) is known, the wave amplitude A(9) can be founded by solving this I
integral equation.

3.2 Estimation from 1-D Wave Cuts

In many real situations, two-dimensional wave elevation data or spectra may not

be available, but one-dimensional (1-D) wave cuts or spectra may be obtained by

some remote sensing means or by field measurements. In this section, the relation

between one-dimensional wave spectra and the wave amplitude function is discussed

based on the complex-valued wave elevation cuts. Then, a special example is given, U
in which the wave cut is measured by a stationary sensor, and the wave amplitude

function is recovered from its FFT spectrum.

The derivation of the wave amplitude function from wave spectra includes three I
steps. First, the one-dimensional wave cut is expressed as a function of time accord-

ing to a pair of wave cut path equations; then the spectrum is obtained by taking the

Fourier transform of the wave elevation; finally, the wave amplitude function is ex-

pressed in terms of the spectrum. Now, consider a general case shown in Figure 3.2,

where a wave cut is taken in the ship generated wave field by a sensor moving with

a uniform speed Up in a direction making an angle a with the positive x-axis, i.e.,

the direction that the ship is moving. In the reference system moving with the ship

at constant speed U, the wave cut path can be described by a pair of parametric I
I
I
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sensor (xoyo) Y

N ship wave

Figure 3.2: 1-D wave cut in the ship wave field.

* equations

z(t) = Xo+(U cosa-U)t (3.35)

y(t) = yo + Up sin a t (3.36)

where t is a parameter representing the measurement time, and (xo, yo) is the sensor's

I initial position in the given coordinate system at t = 0. If the sensor is mounted

on an airplane or satellite, the sensor's speed Up will be much larger than the ship's

traveling speed U. In some cases, however, the sensor is considered to be fixed in a

I position to measure the wave cuts when a ship passes through, for instance, in tow

tank experiments. When Up cos a > U, x(t) increases with t, otherwise it decreases

with t.

The complex-valued wave elevation cut can be derived by substituting (3.35) and

(3.36) into (2.18) and then by taking the Hilbert transform. Its form is given by

M () M (0)t . A'(O)e j iO(O) ej 2r4(e)tdO }*# (3.37)

I
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Figure 3.3: Curves of tOte)p versus 0 for different wave cut angles a.

where {.}'" specifically defines a conditional conjugate operation, that is, no opera-

tion is taken when D(O) >_ 0, but the conjugate operation is taken when 4'(O) < 0.

I0(O) and 6(0) are defined by

o(O) - K.(O)xo + Ky(O)yo (3.38)

400 Tv-[K.(O)(Upcosa - U) + K,(O)Upsina]. (3.39)

With the above wave cut expression, the wave spectrum is obtained by taking

the Fourier transform of (t) with respect to t:

H(f) = F {(t)}= 0 (t)e-J 2rf t t

= j._ {A-(O)eJ*o(9)} 6(f - IJ-t(?)) dO
2 - A'(Oo) d (oR)}'*, (3.4I0)
ID, (0o)1

I
I



27

U 2T

100 
.......... .1 0AM 0

-2 -4 (deg.)

Figure 3.4: Curves of KUpversus 0 for different wave cut angles a~.(.1

I where Oo must satisfy the equation

f f- I(e)I=o0(.1

and must be such that 'Z(Oo) # 0. Here, the derivative, C'(O), is calculated from

(3.39) and is given by

I 'I.'(0) = 2 9 2 [Ucs - U) sin 0+ Up sin a sec O(sin 2 0+ 1)] 3.2

When Up, cos a > U, '1(0) and V1(G) can be approximated by

$() KoUp cos(9 - ct) (3.43)

2wKos20 c [. sn 0 + sin asec O(sin 2 +1) (3.44)

Iwhere Ko -6. These forms are similar to the ones given by Tuck, Collins and Wells

[6.The curves of 0 versus ")and '(0 are plotted in Figure 3.3 and Figure 3.4KoU, KoUp

for the above approximate relations.
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By rewriting (3.40), the wave amplitude function A(O) now can be expressed in

the form

A(O) = I¢'(0)l { fH*(f) }'" e °(O) (3.45)

where the subscript of 0 is omitted for simplicity, but keep in mind that 0 must N
satisfy (3.41). When the ship wave is symmetric to the ship central line, the wave

amplitude function is an even function of 0, thus the calculation may be taken only

for 0 < 0 < ! or -Z < 0 < 0. Because of the fact that (f) =0for f < 0, only I
the positive frequency components needs to considered in the above calculation. The

valid wave angle can be found for each positive f by solving (3.41) or by estimating

from curves in Figure 3.3 and Figure 3.4. In terms of (3.45), the wave amplitude

function can be calculated if the wave cut spectrum Hr(f) has been obtained together

with the parameters U, Up, a, and the initial position (xc, yo). The methods for

obtaining the ship speed U and the wave cut angle a will be presented in the next 3
chapter.

As an example, a special case now is considered in which a sensor is assumed fixed I
in position and the wave elevation is measured as the wave field is generated when

the ship passes, as is typically done in tow tank wave measurement experiments.

Both Up and a are zero for this case. 0< cos 0 < 1 when 0 ranges from - zto, I
thus, now D(O) = <0. For this case, the wave amplitude function in (3.45)

and the f constraint condition in (3.41) become

A(O) = H(f) g s in (0) e  =fj¢ (f)c Ks (O)-eOO(G) (3.46)

f o -0 (3.47) If 2 'U cosO 0

Since frequency f is positive, its minimum value that can be considered in the esti-

mation of the wave amplitude function from the spectrum is fmn = j ... in terms of
2 rU I

I
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(3.47). Given a value of f larger than fmi,, there are corresponding values for wave

angle 0 and R(f). Hence, A(O) can be evaluated in terms of (3.46).

U Usually, the spectrum 1H(f) is obtained from the FFT of discrete wave cut data or

mapped from other discrete spectra. Therefore, f is discrete. For the wave elevation

cut, if the data length is N and the sample interval is At, then the discrete positive

I frequency is given by

I k (3.48)
N~N

I k = ko, ko +t 1,...,N

where kI denotes the smallest integer larger than 9 The corresponding discrete

wave angle is given by

-1 gNAt

Bk ~~2kU
k = ko, ko + N (3.49)

From this formula, it is found that the data length should be large in order to obtain

a good resolution for small wave angles. The minimum resolvable wave angle is

deednoN the possible maximum resolvable wave angle is dependent

on the sample interval, which will be discussed in the next section.

The above derivation is based on the assumption of the time sequential wave

I cut data. In some applications, however, the path of a wave cut may be described

by a path equation y = yo + tan a x, for instance, the one-dimensional wave data

is cut from two-dimensional wave data in the x and y spatial domain. For this

case, the wave elevation is given in the form of q(x) i(x, y(x)), its spectrum

can be obtained by taking the Fourier transform with respect to x. Then similar

procedures to calculate the wave amplitude function can proceed. For instance, the

I
I
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wave amplitude function for a wave cut v(x, yo) is given by 3

A(O)~g -- 9sin(0)l Ij l -r \0 )JK()j o  (3.50)

A(O) = H(u) 2 U2 cos29 e e *a = #(u) 2 (3.50)

U 9 U 2G =0 (3.51)u 27rU2cs CO I

where yo is a constant and ff(u) is Fourier transform with respect to variable z.

Similar to the two-dimensional case, it is assumed in the above discussion that the I
truncation error caused by finite data length can be neglected. In some situations,

however, the truncation error is too large to be neglected, and thus some remedy

methods are needed. One method is to extend the truncated wave cut according to

the theoretical ship wave asymptotic behavior as given in [20]. Another possibility,

which will be discussed here, is the use of an inversion technique to recover the

wave amplitude function from truncated wave spectra, which is similar to the two-

dimensional case discussed in Section 3.1.

In the second method, it is assumed that the data length is T, and that the U
truncated wave cut is represented by q T(t) = 1l(t)gT(t - 2), where the gate function

is defined as gT(t) = 1 while < t < and zero otherwise. The Fourier transform

of the one-dimensional gate function is T S.(rTf). By taking the Fourier transform I
of T, the spectrum of the truncated wave cut is given in the form

-T(f) = Te- JrT J {A"(0)eJ0(#) yo eJiTI4(0)S'(irT(f - I'D(O)1)) dO (3.52)

When HT(f) is known, A(8) can be found by solving this integral equation. Though,

the calculation will be more complicated than the method neglecting truncated er-

rors.

So far, the first section and this section have discussed the methods to recover

the wave amplitude function from either one- or two-dimensional wave spectra. Gen- 3
erally speaking, the calculation for one-dimensional data is simpler and performance I

If
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is better than those for two-dimensional data if the one-dimensional data contain

enough required ship information. The reason that the accuracy may be degraded

in two-dimensional discrete cases is that the spectrum consists of discrete sample

pixels, the impulse on the locus can not be always located on these sampling points,

and a slight deviation from the locus may result in a large error for that impulse

I value. However, the advantage of using two-dimensional data is that it is much eas-

3 ier to remove the background noise, such as a rough wind generated wave, and it

is also easier to estimate a ship's speed and direction from two-dimensional wave

U fields than from one-dimensional wave cuts. For the above reasons, it is suggested

that the signal processing and the estimation of ship speed and direction proceed

in the two-dimensional basis, but the wave amplitude function be recovered from

one-dimensional data that are extracted from the two-dimensional data.

1 3.3 Effect of Data Sampling Intervals

3 The wave amplitude function is a function of the wave angle. Theoretically, the

wave angle ranges from -M to M for ship generated surface waves. In most situations,

I however, the data we obtained are discrete, and the range of the wave angle is

dependent on the sample interval and the ship speed as will be seen below. The

following two subsections discuss the effect of sampling intervals on the maximum

resolvable wave angles in one and two-dimensional cases, based on Nyquist's sampling

theory. The final subsection discusses the relationship between the wave sampling

intervals for a real ship and its model, because ship models and tow tank experimental

3 data are usually used.

I
I
I
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3.3.1 Maximum Resolvable Wave Angles in 1-D Cases

The maximum resolvable wave angle from a one-dimensional wave spectrum is

determined in this subsection, based on Nyquist's sampling theory and the relation

between the wave angle and wavelength. I
To apply Nyquist's sampling theory to the ship wave sampling problem, the

wavelength expression is given first here. For a ship moving at speed U, the wave

number K and wave angle 0 have the following relation from Chapter 2: 3
K J g (3.53)K=U2 COS2 0 *"

According to the definition of wavelength A and (3.53), it follows that

2zr

= U2 cos 2 0

0.641U 2 cos 2  . (3.54)

According to Nyquist's sampling theory, in order to reconstruct a signal from its

sampling values without aliasing error, the sampling interval A in the spatial domain

must be such that I

< 1 (3.55)

where Amin is the shortest wavelength that the signal contains. If the data sampling

is taken in the time domain mentioned in Section 3.2, then A = UpAt. Applying

this sampling criterion to the above ship wave problem, it follows that U
A< VU2cos20 . (3.56)

-9

Some comments can be made here in terms of (3.56). Since the wavelength ranges

from 0 to 2U 2 , corresponding to the wave angle in -2, Z], the sampling interval I
I
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must be from 0 to U2. Thus, the sampling interval must approach zero, in order to

cover the wave angle approaching ±-Z. In practice, the determination of the sampling

interval depend- on many other facts, and the interval can not be very small. For

any sampling interval A larger than zero, the signal components with the wave angle

close to ±! will inevitably have some distortion. However, if the intensities of these

I components are very small when the wave angle approaches ±!, this distortion may

be neglected in real applications.

If the sampling interval A is given, then the minimum wavelength which can be

I resolved from the sampling signal is determined by Ami,, = 2A; additionally, if the

ship speed U is also given, the maximum wave angle which can be resolved from the

sampling signal is given from (3.56) by

3 e s:, = ~ l(~ i~ 2) (3.57)

I Thus, the available signal components in the wave spectrum will be in the range of

3 0 = 0,.i, to 0 = 0,..., where 0,i. has been discussed in Section 3.2 and is given by

Cos1 -IkNA if A = UpAt is considered.

I For easy reference with different ship speed parameters, the curve of maximum

resolvable wave angles from one-dimensional wave spectra versus U,' is plotted in

Figure 3.5. As an example for a one-dimensional case, given A = 12.5 meters and

3 U = 10 meters/second, it follows the maximum resolvable wave angle 0,,.. = 51.36° ,

and the minimum resolvable wavelength Am.,, = 25 meters.

3.3.2 Maximum Resolvable Wave Angles in 2-D Cases

The above discussion about one-dimensional cases can be extended directly to

I two-dimensional cases. In order to reconstruct a two-dimensional signal from its

I
I
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Figure 3.5: Maximum resolvable wave angle from 1-D or 2-D wave spectra versus A " I
sampling values without aliasing error, the following conditions must be satisfied,

according to Nyquist's sampling theory:

1A  1

1 (3.58)Az< Axn -2vx=

where A, and A, are the spatial sampling intervals in the z- and y-directions,

respectively. A.,,. = ' and A,,.,. = ' are the minimum wavelengths contained I
in the two-dimensional signal in the z- and y-directions. u,,, and Vmaz denote

the maximum spatial frequency components that the signal contains. If sampling

intervals A, and A. are given, the spectrum components that can be presented are I
in the range [-un, un] and [-v,., v] in the spatial frequency (u, v) plane, where I
urn - and vn = ' 2

I
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According to the results discussed in Section 3.1, the non-zero spectrum compo-

nents for ship waves are always located on a locus on the (u, v) spatial frequency

plane, as represented by

U g (3.59)
-27rU

2 COSi g sine0
V =. sin (3.60)

The locus will have an intersection point with the edge u = urn or v = v.. The

maximum resolvable wave angle can be determined from the intersection point. If

the locus has an intersection point with u = ur, then the maximum resolvable wave

angle can be obtained by solving u = urn and (3.59);

0 == cos--( )22ruU2
= CO - (3.61)

If the locus has a intersection point with v = then the maximum resolvable wave

angle can be obtained by solving v = v. and *

Ornaj = sin-'{1[ + g )2+41}

=+ (sn--.ui)2+4 1} (3.62)

In most cases, the sampling intervals in the z- and y-directions are set to be the

same, i.e. A. = As = A. It can be proved that in the first quadrant of the (u,v)

plane, the locus is under the line u = v for 0 << ! and is above the line u = v

for < 0 . From (3.59) and (3.60),

U-V= 2rUcosO( 1 -tan)

thus,

U > if 0< (3.63)

I
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U i r <,<r (3.64)Iu < v if-<O<-.

From (3.64), it can be concluded for the cases of A., = A, = A that when

z , the locus has an intersection point with u = u.. and when 1 < 0 ,' 1

the locus has an intersection point with v = v,m, and A can be expressed from (3.60) 1
in the form

=J U2 COS n. if0 Omai :5
U2 COS 0. cot 0... if - < 0... _:

(3.65)

Figure 3.5 also gives the maximum resolvable wave angle curves versus the ratio of

the ship speed U and the sampling interval A = A., = A.. From Figure 3.5, we find I
that the sampling intervals must be small enough to recover the wave components

with large wave angles. Considering the above example again for a two-dimensional

case, given A = 12.5 meters, U = 10 meters/second, then 0,a= 55.470 in terms oI

formula (3.62).

3.3.3 Sampling Intervals for a Real Ship and its Model

This subsection discusses the relation between the wave sampling intervals for a

real ship and its model. For this purpose, a non-dimensional parameter F., called I
the Froude number, is introduced here. With physical length L, speed U and gravi-

tational acceleration g, F,, is defined by

F=U (3.66) I

It is widely used in the ship wave resistance analysis. According to studies of ship I
wave resistance, the wave resistance of two geosims with the same hull shape are the

same when their Froude numbers are equal [211. I
I
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If applying the above result to a real ship with length L and moving speed U and

its model with the same hull shape but length L,. and moving speed U, then the

following ratio cau be obtained when their Froude numbers are equal:

U,2 L.. (3.67)
IT2 L.

U2="L-

To express the sampling interval relation, let the sampling intervals corresponding

to the real ship and its model be denoted by A and Am, respectively. The ratio of

the two sampling intervals can be connected to the above ratio in the relation

I A = (3.68)A U 2  
L

for either the one-dimensional case in (3.57) or the two-dimensional case in (3.65).

This tells us that when the Froude number is kept the same, the sampling interval

H corresponding to the ship model can be taken as Am = - *A.

3 So far, this section has discussed the effect of sampling intervals on the maximum

resolvable wave angles in one and two-dimensional cases, and the relation between

I the wave sampling intervals for a real ship and its model. In summary, from the

viewpoint of analysis of ship wave spectra and extraction of ship geometry informa-

tion, the determination of sampling intervals depends mainly on the ship speed and

ship length. The smaller the sampling interval, the smaller the distortion of wave

spectra, the larger the maximum resolvable wave angle. Additionally, it will be seen

in Chapter 4 that the smaller the sampling interval, the more periodic zero points are

available in the wave amplitude function. Therefore, the sampling interval should be

selected as small as possible. In practice, however, the resolution and properties of

data acquisition systems and their operation position, such as SAR, greatly limit the

small sampling intervals to be used. Other limitations may be the data storage and

data processing, but they are less critical compared to the former. For the wave gen-I
I
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erated by a ship model, the sampling interval can be taken as the one proportionali

to the ratio of the lengths of the model and real ship.

I

I
l

I
I
I
I
i
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CHAPTER IV

IESTIMATION OF A MOVING SHIP'S SPEED
AND DIRECTION

I
From the viewpoint of remotely sensing a ship moving in the open ocean, inter-

I esting problems exist related to the detection of the ship's actual presence, and the

acquisition of its dynamic and static information, for instance, the ship's direction

and speed and the ship's size and hull shape. These problems will be discussed in

the following chapters based on the knowledge given in the previous chapters. This

chapter focuses on the estimation of a ship's direction and speed from one dimen-

sional and two dimensional wave spectra. Before this discussion, the problem of the

presence of a moving ship in ambient ocean waves is briefly discussed.

4.1 Presence of a Moving Ship in Ambient Ocean Waves

Although a ship's length is bounded within a range of values, the wake it generates

in the open ocean may extend for many tens of kilometers. In the indirect methods,

the detection of a ship and its related characteristics is obtained by measuring ship

generated waves or their spectra.

I One important feature of the ship wake, different from that of ambient ocean

waves, is its wave spectrum. As analyzed in Chapter 2 the spectrum of the complex-

valued wave elevation, Hl(u, v), has one locus on the spectrum diagram, and the

39I
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Figure 4. 1: (a) Pseudo image of the wave elevation~ calculated from WAVEAMP for
the Quapaw hull model with direction -Y = 100 and speed U=2.229 rn/s.
The crest appears dark and the trough bright. (b) Pseudo image of the
Fourier transform H(u, v) of the wave elevation from (a).
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Figure 4.2: (a) Pseudo image of the Quapaw ship wave elevation in a random sine
ambient wave. (b) Pseudo image of the Fourier transform of the wvave

* elevation from (a).
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spectrum of the real-valued wave elevation, H(u, v), has two loci on the spectrum

diagram. Because of the distinct spectrum characteristics, it is usually easier to

detect the presence of a moving ship from the sea noise background in the spectral

domain than in the spatial domain.

To understand this point, let us examine a simple example of a ship wave plus a

random sine ambient wave. This is meant to simulate a ship in a swell background.

The ship wave without any ambient waves and background noise is shown as a

pseudo image in Figure 4.1(a) together with its FFT spectrum in Figure 4.1(b). U
In Figure 4.1(a), the origin of the coordinate system has a translation and rotation

relative to the ship center, the origin of the ship reference system defined in Chapter 2.

This difference results in a rotation of the loci on the spectrum diagram, but it dose I
not change the shape of the loci. Further discussion about it will be given in the

next section.

This ship wake is calculated using WAVEAMP, a program to compute the Kelvin I
wave elevation [29], for a 1:12 scale model of a seagoing tug, the USS Quapaw, which

has a length of 4.953 meters and a speed U of 2.229 meters/second with an angle of

100 relative to the x-axis. The ship wave height has a maximum value 0.231 , mean

0.007 and standard deviation 0.013 meters. The ship wave involved in a random sine

ambient wave is displayed in Figure 4.2(a) together with its FFT spectrum in Figure 1
4.2(b). The random sine wave has a simple model, Absin(Kx + Ky), where Ab K_,

and K,, are random variables generated point by point by a computer program. Ab

originally has a Gaussian distribution with mean 0.05 meters and standard deviation I
0.05 meters, denoted as K(0.05, 0.05), and K_ and K, originally have a Gaussian

distribution A'(3.14, 1.0) in rad./meter. They are smoothed using a median filter with

a 9-point window size, equivalent to 1.8 by 1.8 meters. The smoothed Ab, K and

I
I
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K, have means close to their original means, but have different standard deviations

of 0.014 meters, 0.28 rad./meter and 0.28 rad./meter, respectively. Finally, they are

used to calculate the random sine wave and are added to the ship wave.

From this example, it can be found that in the spatial domain, the ship wave,

particularly the wave on the left of the ship, has been corrupted by the random sine

wave because of their close wave direction, but the loci can be still recognized clearly

from the spectrum. In real situations with severe background noise, conventional or

special signal processing may be used to enhance the desired ship wave signal.

4.2 Estimation of a Ship's Speed and Direction from 2-D
Wave SpectraI

This section discusses the estimation of a moving ship's speed and direction from

its two dimensional wave spectrum. The discussion will begin with two kinds of

spatial coordinate systems and their corresponding spectrum coordinate systems,

and then the formulas for estimating the speed and direction are derived.

In the following, the discussion will focus on the estimation from the magnitude

of a Fourier spectrum, instead of the one from a power spectrum, since a power

spectrum and the magnitude of a Fourier spectrum have a direct relation and are

equivalent when the spectrum locus position is used to estimate a ship's speed and

direction.

It has been shown in Chapter 2 that under the steady state assumption, the ship

speed U, wave angle e and wave number K(8) have a direct relation

K(o) = g (4.1)
U2 COS2

This relation indicates that the ship speed depends only on the wave number, or

the wave length at a given wave angle. Theoretically, once the wave number K(9)

I
I
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is available, the determination of ship speed becomes a trivial problem. However,

the determination of the wave number and wave angle needs prior information about

the ship's direction. If this information is not available, then the problem becomes

complicated, and both the ship's direction and speed need to be determined simul-

taneously.

To determine the ship's direction, two coordinate systems in the spatial domain, I
shown in Figure 4.3, are considered in this section. One is the reference system

moving with a ship as defined in Chapter 2; another is the image coordinate system

whose origin is the imaging center and the positive x-direction is the sensor's direc- I
tion. If zoy denotes the ship reference coordinate system and Xm Ormym the image

coordinate system, then their relation is given as

ZM = ZMO+xcosak-ysina (4.2) I
yr, = ymo+Zsina+ycosa (4.3)

or

Z = (Xm - xmo)cosa-+ (y3n - ymo)sina (4.4)

y = -(x -xno)sina+(y, -yo)cosa (4.5)

where (zo, ymo) is the coordinate of the origin o of the ship reference system in the I
image coordinate system and where a is the angle between axes ox and omZ, which

represents the ship's direction relative to the sensor's direction. With the relations,

the ship wave 77(x, y) expressed in the ship reference system can be expressed in the I
image coordinate system as

7r7,(xm,Ym) -7[(x,-X.o)COSa + (y - yMo)sina,

-(xm xno) sin a + (y -yrno)cos a (4.6)

'I
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I
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I

Figure 4.3: Two coordinate systems in spatial domain: the ship reference coordinate
system xoy and image coordinate system ZmOmnYrn

I
vVM
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I IIm

Figure 4.4: Two coordinate systems in frequency domain: the ship reference coordi-
nate system uov and image coordinate system umomvm

I
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Corresponding to the the above spatial domain coordinate relatiors, the spec-

trum domain coordinate relations can be established through the Fourier transform

relation. The Fourier transform of 7(x,y) has been given in (2.20), i.e., H(u,v) = I
7{ 17z, y) }. The Fourier transform of 7,,,(x,,,, y,,,) is given as

H. (u., v.) = Y{ 7, ?r(xm, Yr) 00 0 11. ~(Xn, y)e1(umx+vmYm)dxndym

-- o 17/i [ (x z= - x ..° ) cos a +} (y',. - y' °) sin a,

-(x,. - X.0) sin a + (Yn - Y,,o) cos a ]e-J2("m+t "my)dX.dY,

[ [f L0 77(X, y)ei2-[z(u coeca+tm &in)+i(-. ina+vcosa) ]dXd] I
"e- _j21(u'nxmO+v"mn)

= H(Urnc0- a+vmSfla,-umsin + VmCOa)e.i21(umo+vmo). (4.7)

From the above relation of the Fourier transforms Hm(u,v,) and H(u,v), the

coordinate relation in the spectrum domain is given as

U = u,,cosa+vmsina (4.8)

V = -Vmsina+vncosa (4.9)

or

Un = ucosa-vsina (4.10) I
vm = usina+vcosa (4.11)

In terms of the above expressions, the following comments can be made:

(1) The spectrum domain coordinate system uov, corresponding to xoy, has a ro-

tation, with an angle a, relative to the spectrum domain coordinate system uiomvm,

corresponding to x,,o,,ym. Thus, if a is determined, then the ship's direction relative

to the sensor's direction can be obtained.

I
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(2) The translation (x,,,o, y,,.o) between the two spatial coordinate systems reflects

only on the phase of H..(u,,, vrn). Thus, it is not important to know the translation

I since the wave number and wave angle are determined from the magnitude of the

Fourier spectrum or the power spectrum.

(3) When a = 0, then IH.(u., v.)I = IH(um, v.) 1, the wave number components

and the spatial frequencies have simple relations, i.e., K = 27ru, and K = 2 rv,,,,

and the wave angle is given as 0 = tan-'1 . For this case, the speed can be calculated

by directly measuring the position of the locus points in the spectrum diagram.

(4) According to the spectrum coordinate relation, it follows u,, + V, u2 + v2 ;

thus, the wave number K is invariant with the coordinate system transform, that is,

I K-27rU =+ v-27rV (4.12)

3 With the above relations and the conclusions, the general formulas to determine

a moving ship's direction and speed are derived in the following. First, consider the

ship's wave spectrum locus in the uov coordinate system. From (4.1), KcosO -1

thus, for any two locus points, it follows

= Vcos0leosF 2CO0 (4.13)

where the subscript, 1 or 2, indicates that the wave number and angle are obtained

from the given point 1 or 2. Since cos 0 = 7 7 -g, (4.13) can be rewritten as

VK2U1 = VK"u2  .(4.14)

In the uo,. mvm coordinate system, (4.14) becomes

IV/K(U,, cosa + v,,,, sin a) = VK (u 2 cos a + Vm2 sin a) (4.15)

and, thus, the angle a can be estimated from

-tan -/jv1, 2 - V/K2VI (4.16)I

I



48

Similarly, the ship speed can be calculated from

U Kco~20, V~iI~ j+ijiI (4.17)jCO.82j = FZlu,,,cos& + v j sip al

where j = 1 or 2. 3
In real situations, the ship wave spectrum is discrete, and thus the locus points

on the spectrum diagram will not always exactly locate on the sampling grids. This

results in errors on some locus points when they are read from the spectrum diagram.

To remove this effect on the calculation of the ship's speed and direction, many pairs

of locus points can be used to calculate the ship's direction and speed, and then their

average is taken as the estimate of the direction and speed. Specifically, consider

there are M pairs of locus points available. The angle a is calculated with each pair I
of points, and the average of the calculated angles &j, i = 1,..., M is then considered 3
as the estimate of a, i.e.,

(4.18)

The average of Ui, i = 1, ..., 2M is considered to be the estimate of the ship speed ,

that is, 3
- 2M

2M E~Im
S2M 

(4.19)
- gIV

The formulas for estimating a moving ship's direction and speed from a two

dimensional wave spectrum have been derived above. The scheme for the estimation I
is now shown in Figure 4.5. In real situations, ship waves are involved in a random 3
sea background. Thus, a wave spectrum contains not only the ship wave components

but also the noise components. To remove the random noise and other undesired I
I
I
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I

H U FI

I Figure 4.5: Scheme for estimating a moving ship's direction and speed from its wave
spectrum

components, digital processing techniques may be used. The clipper shown in the

figure is used for the this purpose.

Theoretically, the two dimensional Fourier transform of the ship generated wave

is composed of 6-functions; thus, there are many infinite-size impulses located on the

loci of the spectrum diagram as discussed in Chapter 3. When the finite wave patch

is sensed as in real situations, they are on the order of O(L.) [61, where L, denotes

SI the characteristic length of the finite patch. For the case of high signal to noise

ratio, a simple processing method can be used. For instance, a clipper is used to

remove the background noise components. This processing is helpful in determining

the position of each locus point. From the positions (ur,., v,.) of locus points, the

ship's direction and speed finally are calculated. The algorithm can be implemented

in software with a fast and accurate estimation performance.

To demonstrate the above method, consider here an example of the Quapaw's

wave elevation field, shown in Figure 4.1(a). It is assumed in the calculation that

I the ship's direction and speed are a = 100 and U = 2.229 meters/second, and that

the sampling intervals in the x- and y-directions are 0.2 meters. The ship's direction

and speed are estimated from the spectrum of the wave field, whose contour plot is

shown in Figure 4.6. Note that the subscript "m" has been used in this figure to

I
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Figure 4.6: Contour plot of the Fourier transform H.(u,m, v,) of the Quapaw's wave

elevation.

emphasize the image coordinate system. A total of 183 locus points are evaluated

for the right locus on the spectrum with a threshold of PH + aH, where PH and aH

are the mean and standard deviation of the spectrum intensity. According to the U
computer calculation, the estimated direction is & = 9.999* with a relative error of

0.006% and a r.m.s. error of 0.233*; the estimated speed is U = 2.230 meters/second

with a relative error of 0.03% and a r.m.s. error of 0.019 meters/second.

4.3 Estimation of a Ship's Speed and Direction from 1-D
Wave Spectra

This section discusses the estimation of a moving ship's speed and direction from

its one dimensional wave spectrum. The expression for the spectrum of a wave cut

making an angle with the positive x-axis has been given in (3.40). The wave cut

spectrum has two peaks under certain conditions, and the frequency positions of the

two peaks can be used to estimate the ship's direction and speed, as suggested by

I
1
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[I Tuck et al [6]. For this one-cut method, the formulas for estimating the direction

and speed are given here first, and then another method, called the two-cut method,

I is introduced for estimating the ship speed from two wave cuts parallel to the ship's

central line. Examples are also given to demonstrate the two methods.

4.3.1 One-cut Method

The discussion begins with the wave cut spectrum and its properties. The spec-

I trum expression for a wave cut have been given in (3.40), that is,

I'()1 { A*(O) eJ'd"(0) }*1

with a constraint condition for 0, f - I(0)1 = 0, as in (3.41). This condition

indicates 0 is a function of frequency f; thus, there may exist some frequencies such

that '(0) = 0, and hence there may exist some singularities for the spectrum. For

the finite length wave cut, this will cause some sharp peaks on its spectrum diagram.

The peak height is proportional to the square root of the data record length [6]. The

frequency points of the peaks on the wave cut spectrum can be determined by two

equations, (3.41) and

I'(e) =0 (4.20)

Here, 4P depends on the wave angle 0 as well as the wave cut angle a. Substituting

the approximation of 4 given in (3.43), 6(0) st K o , into (4.20) and then

solving the resulting equation together with f-I4 (O) = 0 yields the relation between

! 8 and a:

a = tan- 1  2 0  

(4.21)
Scos20-3

I
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The curve of a versus 0 is plotted in Figure 4.7 (a). It is found from the figure or

calculation that Isin-' 1 (= 19.50) is the maximum wave cut angle for the peaks to

exist.

o(b)
20 5 I

4,

4~0 32
002

-100 -50 0 50 100 -100 -50 0 50 100
8 (deg.) 9 (deg.)

5 1.0 -

S I0.6I
2L- 0.4
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0._ _ _ _ _ _ _ _ _ _ _ 0.0.
-20 0 20 -20 0 20
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Figure 4.7: Relations between the wave angle 0, cut angle a and frequency fp at
peaks. (a) a versus 0; (b) 24f versus 9; (b) versus a; (b) LA

voUs ru s KoUv fp2
versus cr.

With the above relation of 0 and a, the special frequency points fp are obtained

from f -1[()1 = 0 in the form U
27rfp 1 (4.22)I
KoUp cos Ov-,4 - 3cos 2 0

The frequencies also can be directly expressed in a function of the wave cut angle a: I
2r'fp = 3 (4.23)

K U 4 - r2,2(a)

where Ko = -6, and Up and U are the speeds of the sensor and ship, respectively,

I
1
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and where

rl,2(a) 8 ( 8tan2 a) ± 3v11 - 8tan2 a (4.24)
2(1 + tan2 a)

represents the value ri with "+" or r2 with "-" before the sign of square root.

Since r, and r2 are real, 1 - 8tan2a > 0, which is equivalent to a < sin-11] as

asserted above. In terms of (4.23) and (4.24), there are one or two frequency points,

corresponding to r, and r 2, where the peaks appear. When a = 0, there is a finite

frequency point fP1 and an infinite frequency point fp2 = oo; when 0 < a < Isin-1 [,

there are two finite frequency points, fpl and fp2; when a = Isin-'AI there is only

one finite frequency point fPi = fp2.

From the above special frequency points, the ship's direction is estimated first

and then the speed is calculated. When 0 < a < lain- 1, the direction is estimated

by calculating the ratio of the above special frequencies, i.e.,
-_ _ 4i(a)

fp2 4 - rF - (4.25)

The frequencies fpl and fp2 are found from the wave cut spectrum, then the wave

cut angle is obtained by solving (4.25), and finally the ship speed is calculated from

(4.23) by noting the relation of K0 with the speed, i.e., K0 = -U. Figure 4.7 (d)

shows the curve of the ratio 131 versus the wave cut angle a. When a = 0, the ship

speed is directly estimated from fpl with the formula
I 27rfpl

KoU, (4.26)

To demonstrate the above one-cut method, consider here an example in which

the wave elevation cut, shown in Figure 4.8(a) is calculated using WAVEAMP. The

ship model is the same as in the above two dimensional case. Each cut has 256 data

points and a sampling interval of 0.001 seconds. It is assumed that the ship has aI
I
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Figure 4.8: (a) Wave elevation cut calculated from WAVEAMP for the QuapawI
model with wave cut angle a = 100, speed U = 2.229 m/s, and
(XMO, YmO) = (-48.5087, -205690); (b) Magnitude of the Fourier trans-
form (dotted line) of the wave elevation from (a), and two peaks (solid
lines) where f - 14 (O)I = 0.
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direction of a = 100 relative to the sensor's direction, and that the sensor's speed

is Up = 199.219 meters/second. The frequency points at peaks are obtained from

* the spectrum, which is the dotted line in Figure 4.8(b). The two desired peaks have

I been detected and are shown in solid lines in the figure. Since the two peaks are

located close together, the peak P2 has a little left shift in the spectrum shown in the

dotted line. Thus, the peak P 2 has to be determined after removing the peak P from

the spectrum using a bandpass filter with good selectivity. The filtering, position

detection and all other calculation can be automatically completed using a computer

program. According to the computer calculation, the detected position of the two

peaks are fpl = 62.5 H, and fp2 = 95.7 H,; the estimated direction is ef = 10.019*

I with a relative error of 0.19%; the estimated speed is U - 2.195 meters/second with

a relative error of 1.51%.

4.3.2 Two-cut Method

When a wave cut is parallel to the ship's central line, the wave cut angle is equal

to zero. For this case, an alternative method can be used, which is called here the

two-cut method because two wave cuts parallel to the ship's central lines are used. In

this method, the ship speed is estimated from the relative phase difference between

the Fourier transforms of the two wave cuts. The derivation and example are now

* given below.

First, recall the relation between the wave amplitude function and the Fourier

I transform of a wave cut with a = 0, which are given in (3.46) and (3.47):

I A(O) () IKv(B)I CJ(K.(G)-o+Ky(e)o) (4.27)
27r

f g =0. (4.28)

2rU cos 0

I
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Now, consider two parallel wave cuts with cut angle a = 0, distance Ay = Y2 - YI

and the same starting point x0 in the x-direction. The Fourier transforms of the two

wave cuts are Hi(f) and H2(f). Since the wave amplitude function A(O) is supposed U
to be the same for the two wave cuts, using the above relation and dividing 12(f)

by -li(f) leads the following relation

/1l(f) ej fa y u  $ (4.29) m
112(f)

where the relation Ky = E has been used. If the phase difference of H2(f) and I
HI(f) is represented by AOH, then the phase relation in (4.29) can be written in the

form

gsinO(f) _ AOH m
U2 cos2 9(f) fay

From (4.28), cos 0(f) = 2.w_ Substituting this relation into (4.30) yields

(27r)4U2  g )2 ]~~
( 22')rfU fA 1, (4.31)

Note that from the above expression, -.j approaches 1 as AOH approaches 0. Thus,

once we can find the frequency f,nj, corresponding to the minimum value of IAHJ,

then the ship speed can b.e found from

9t (4.32)I

To demonstrate this two-cut method, consider an example in which the ship wave

elevation cuts were measured by three capacitance wave probes when the Quapaw

model was towed in a tow tank 1. Three wave cuts were obtained for each run.

The wave elevation of two runs, RUN3 and RUN5, are shown in Figure 4.9. As

an example, Figure 4.10 shows the magnitude of the spectra of wave cuts RUN5-B

'The experiments were made by Ship Hydrodynamics Laboratory, Department of Naval Archi-
tecture and Marine Engineering, the University of Michigan in October, 1990.

I
I
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3Figure 4.9: Wave elevation cuts from tow tank experiments for the Quapaw model.
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Figure 4.10: Magnitude of the FFT of wave cuts, RUN5-B and RUN5-C, and their
phase difference AOH.

and RUN5-C and their phase difference. Here, AH has been processed using a

median filter with a 3-point window size for detecting the minimum point of the I

phase difference. The estimation results are listed in Table 4.1.

So far, the methods for estimating a moving ship's direction and speed from one

and two dimensional wave spectra have been discussed. Comparing these methods,

the two dimensional method has three primary advantages. First, it has no limitation

on the ship's moving direction, except for the 1800 ambiguity that results if no further I
prior information is used. This is opposed to the one-cut method, which is suitable

only for the cut angles, a, between [-19.50, 19.50], but is unable to tell the positive I
I
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RUN3 RUN5

cuts T (m/S) error (%) T (m/) error (%)

a & b 2.283 2.4 2.283 2.4

a & c 2.283 2.4 2.283 2.4

b & c 2.283 2.4 2.179 2.2

Table 4.1: Ship speed estimated from the Quapaw's wave cuts using the two-cut
* method.

or negative angle, and may result in false detection if obvious peaks also exists when

I lal > 19.50. Second, the two dimensional method works well even in the presence

of ambient waves and background noise because of the spectrum feature of ship

generated waves. In the one-cut method, the ship wave signal can be easily corrupted

by ambient waves and background noise, and thus it may result in false detection

of the peak position. Third, the two dimensional method appears to achieve more

accurate estimation results than the one dimensional methods. Because of these

reasons, the two dimensional method should be always considered first when two

dimensional spectra are available. It has recently become possible to obtain these

H data from air-borne or space-borne radar systems or other modern remote sensing

techniques.

I
I
I
I
I
I
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CHAPTER V

ESTIMATION OF SHIP LENGTH

I
This chapter gives a detailed discussion of the estimation of a ship's length from

its amplitude function. The ship length is an important quantity to be estimated

in remotely sensing ship characteristics, and it is also an important parameter in I

the further estimation of ship hull. In recovering a ship's hull shape from the wave

amplitude function, an inversion problem is involved, that is, an integral equation

must be solved, which will be discussed in the next chapters. The integral limits I
aldng the x-direction are specified by the ship length. Therefore, the accuracy of

the recovered ship hull shape will depend, to a great extent, on the accuracy of the

estimated ship length. I
The principle of the estimation of ship length is that there is the relation between

a ship's hull and its wave amplitude function, and that ship length information is

contained in the observable periodic character of the wave amplitude function. This 3
character can be found not only in the real and imaginary parts of the wave amplitude

function, but also in the magnitude of the wave amplitude function. I

In this chapter, a theoretical model of the wave amplitude function is developed,

and three methods are designed for the estimation of a ship's length. The first section

discusses the relationship between a ship's hull and its wave amplitude function; the I

60 i
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I second section gives the theoretical proof and analysis about this periodic character

for general ship hull shapes and the relation between a ship's length and its bow and

stem's shapes; the final section gives a discussion of the estimation methods.

I 5.1 Relationship between a Ship's Hull and its Wave Am-
plitude Function

In the study of fluid motion, wave flows due to a moving body are imagined to

be generated by a continuous volume distribution of singularities within the body,

extending out to its surface [14]. In this section, the discussion starts directly from

the relationship between the wave amplitude function and wave source densities or

I source singularities. The non-dimensional form of the relation has been described by

Eggers et al. [20]. After some mathematical manipulations, the dimensional form of

this relation is given by

A($) = 49 /L a(x,y,z)exp{K(O)z + j(K.(O)z + Kv(O)y}dD (5.1)

where a represents the source distribution, D is the source region, and K, K., and

K. are the wave numbers defined in Chapter 2. To estimate a ship's length and

I hull by using this formula, the following two assumptions are made about the source

region and the relation between the singularity distribution and the ship hull.

To simplify the source region, it is now assumed that the ship hull is thin, that

U is, the beam is small compared to all other characteristic lengths of the problem

[14]. Thus, the singularity distribution can be envisaged to be on the ship's center-

plane, instead of on the ship's hull surface, and the source region is considered to be

I L x _ < and -H < z < 0, where L and H denote the ship length and draft,

respectively. Under this assumption, (5.1) becomes

A(O) = 4Ie3 a(x,z)exp{K(O)z + jK.(O)x}dxdz (5.2)I

U
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This formula will be used to analyze the periodic character of the wave amplitude

function.

In the estimation of ship hull shape in the next chapter, the explicit relation

between the wave amplitude function and the ship hull is useful, and thus is given

below. To the first-order approximation, the relationship between a hull's geometry

and its centerplane singularity distribution can be obtained: I
U o(,z) (5.3)

where C(z, z) defines the local half-beam of the hull surface. Thus, combining (5.2)

and (5.3) gives the explicit relation between the wave amplitude function and the

ship's hull: I
A(O) = 2g seCL f H OC(Xz)exp{K(O)z + jK.(O)x}dzdz . (5.4)

For simplicity in discussion, the normalization of x and z with respect to the ship

length L and draft H is considered. By letting

X L - x IE [-1,11 (5.5)

z= Hz' zE [-1,o] (5.6)

equations (5.2) and (5.4) respectively become

A(O) 2 !LHU3K3(9) Afo(x', z')eJ(0)W ea'(O)zdx'dz' (5.7)I

A(O) = H 1 1  e () e dx'dz' (5.8)

where 

I

V(G) = K.(9) = gL 1 (5.9)
() = K( 2U2cos 0 = 2F.2cosO

p(e) = HU 2 K2(0) = gH H 1 (5.10)
(0 9 K . U2 cos 2 0 L F,2 cos 2 0 -----

For ease of notation, the prime on z and z will be ignored in the following discussion.

I
I
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I 5.2 Periodic Character of the Ship Wave Amplitude Func-
tionI

The periodic character of the ship wave amplitude function can be observed when

the wave amplitude function is described as a function of the longitudinal wave num-

ber K. and plotted on a K-A diagram. This periodicity is proved mathematically

in this section, and the inherent connection between the ship length and the periodic

character will be discussed.

In the following derivation, the wave amplitude function with two dimensional

integral form in (5.7) is rewritten into a marginal integral of only x. Its integrand

is expressed in the form of a power series and the integral is then calculated. Af-

ter mathematic manipulations, the real and imaginary parts of the wave amplitude

I function are expressed in the form of cosine functions and their periodic characters

are then analyzed.

The wave amplitude function in (5.7) can be expressed as a marginal integral of

* z by defining a function F(z), i.e.,

A(Kk) _ A(O)=] F(z)eJxdx (5.11)

* where

F(x) LHU3K3 a(x,z) eldz. (5.12)

Here, the wave amplitude function has also been written into a function of variable

K, instead of 0. The integrand function F(z) is another weighted integral of the

singularity distributions. With the assumption given in (5.3), F(x) will directly

relate to the ship hull shape, thus generally F(x) is a smooth function. In the

discussion here, it is assumed that F(x) and its derivatives are continuous in the

I
U
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region -1 <z < 1, so that F(x) can be expressed in the form of a power series of x

00o 00 00

F(x) = E ajr j = ,a2 ,X
2'i + E ai+ 2 i+l (5.13)

j-- i-O i-0

Now, substitute (5.13) into (5.11) and then integrate it. In the calculations, the

following integral formulas are useful: I
J n" cosax = pR.(a,z) cosax+q. 1 (a,x) sinax (5.14)

J n" sinaz = p. (a,x) cosax + qi,,(a,x) sin ax (5.15) I

where n is an integer and I

p~ a )= 0 IP _jr n n2-Ifor n = 0pp., ~) - (5.16)

J -- l). ,,,I for n > 0

tn! x (- 2r 1
qp,(a,x) = (-1) -2r)! (5.17)

= =0 (n - 2r)! (5.18){0 for n=0 I
ql.(a,x) = (5.19)

S(a, x) 0_ _ n! n-2r-1 for n > 0
E= ](- 1) (-2 - fo):>

L~dO~J(n-2r-l)! * 2r+2-

With the above integral formulas, the wave amplitude function in (5.11) becomes a

form from which the periodic character can be observed much more easily: I

A(K.) - A(K) + jAI(K) I
- QR(K.)coseR(K=) + jQI(K.)cosEI(K.) (5.20)

where AR(K,) = QR(K)cosER(K,) and A1(K2 ) = QI(K.)cosEi(K.) denote the

real and imaginary parts of the wave amplitude function. When the function F(X)

is an even function of x, AR will vanish. With the notation v = LK. as in (5.9),

I
I
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QR(KZ), QI(K.) , eR(K.) and e 1(K.) in (5.20) are defined by

QR(K.) = 2[("a2ipR2,(v)) 2 + (v))21 (5.21)
i=0 i-0

0 
00

Qi(K.) = 2[ (1 a2i+1P12 (v)) 2 + ( a2i+q2.+ (v)) 2 ]-o(5.22)
ER(K.) = v - R(v) (5.23)

I eO(K,) = v - 01i(v) (5.24)

where
E-oa2,qRi,,(

ObR(v) = tan-'[ £__,aOip 2 (v) ]  (5.25)
1E ilq2.(,v)

01(v) = tan-[ _o (5.26)

0 for i = 0

pR2i (V) = (5.27)

-O (2i-2r-)! for i = 1, 2, 3,...

qR2 () -(-1)r - (5.28)
r __1(2i - 2r)! V2 r+

1

P--41 1, (2i + 1)! (5.29)

' = (2i- 2r + 1)i 2r+t
--L" 1""(2i + 1)! 1 (5.30)31i1O) r- _1 (2i - 2r)! V2r+2  (.0

From (5.20), it is found that both the real and imaginary parts AR and A1 of

I the wave amplitude function consist of signals with an &4-varying magnitude and

an K-varying "frequency". That is, both the magnitudes, QR(K=) and QI(K,),

and the instantaneous "frequencies", i' -de and -1 del change with K.. Here, the2wr dK 3  2r dKG' K' ee h

frequency concept for a time signal is used. By quoting the terminologies in telecom-

munications, the real and imaginary parts look like two signals, both amplitude and

angle modulated with "carrier frequency" A if K is the analog of time t.

In the above discussion, it has been assumed that F(z) and its derivatives are

smooth and continuous in the hull surface region. Thus, there is one dominant fre-I
I
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quency component at frequency ' in the above expressions of AR and A1 . However,

the real situation may not be so perfect. F(z) may be a piecewise smooth function,

that is, there are some discontinuous function and derivative points. In this case,

harmonic frequency components will appear. For example, assume that there is one 3
discontinuous point at z = Zb E (-1,1), and F(x) is expressed in the form

i=0°=ajz for -1 xzb 5
F(x) = b (5.31)Fjo_-o bij for Xb _<X _

Substituting (5.31) into (5.11) yields the results

AR(K.) = QR.(K.)cos(L, - O'R,(v)) +

QR2( K, xb) COS(XbV - ,6(V, Xb)) (5.32) I
A(K) -= Q 1 (K,)cos(v - 041,(v)) +

Q12 (K, Zb) COS(Zbz/ - 012 (V, Xb)) (5.33)

where the magnitudes QR,, QR2 , Qi1, Qi2 and the phases OR,, ObR,, 01, , 012 are

combined with the coefficients p,(v,z), qR,(v,X), pI,(v,x) and qi(v, x), defined in I
(5.16) -(5.19), at X = -1, Xb, or 1. The detailed expressions for these magnitudes

and phases can be found in the appendix. In (5.32) and (5.33), cos(v - O R, (v)) and

cos(v - 01, (v)) represent higher frequency components generated at the ship's bow

and stern, i.e., z = ±1, and they are similar to those in (5.20) with frequency -4.1r

The new frequency components cos(zb -O lt,(V, Xb)) and cos(XbV - 41, (v, Xb)) are

generated by the discontinuous point at x = Xb, and their frequency ",L is lower than 3
L since tz4I < 1. When Xb = 0, AR and Al may contain a direct current component.

Generally speaking, each discontinuous point in the function F(x) may add a

new frequency component to AR and Al, and the frequency is always lower than

L. As mentioned before, the function F(x) is related to the shape of a ship hull.

I
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Thus, the increase in the discontinuity of the hull surface or its derivatives will

result in an increase in the discontinuity of F(x) or its derivatives and, hence, in

an increase in the frequency components in the wave amplitude function. According

to the ship wave resistance theory, the resistance is proportional to the weighted

integral of the square of the wave amplitude function [14]. Hence, this increase of

i the frequency components may result in an increase in the ship wave resistance.

Therefore, ship hulls are usually designed to be smooth so that the resistance can be

reduced. Additionally, note that the coefficients in (5.16) -(5.1 j contain the factor

i n- 2r - 1 or xn - 2r in each term, and are small for x = Zb < 1 compared to those for

x = ±1. Thus, these lower frequency components generally will not be dominant

as found in real examples. Therefore, the following discussion will still focus on the

i problems with the assumption of smooth hulls.

In the estimation of ship length from AR or A1, the phases ER(K) and eO(K)

are more interesting than the magnitudes QR(Kk) and QI(Kk) because of the direct

relation of the ship length with the phases. For this reason, the discussion about the

estimation of ship length from AR and Al will mainly focus on phase. It is found

U from (5.23) and (5.24) that 9R(K,) = LK and EO(K) = L& when 4 ,R(v) 1b(v)

3 approaches zero. Thus, the curves AR(K.) and AI(K,) corresponding to the real or
imaginary parts of the wave amplitude function have the period k. If the period is

I measured, then the ship length can be estimated.

In general, however, neither 4R(v) nor 01(v) approaches zero, thus the estimation

of ship length becomes complicated. In terms of (5.25) and (5.26), the phases 0,R

i and qOj depend not only on v but also on the coefficients a, which are related to a

ship's hull shape. The relationship between the phases and the ship shape is usually

not straightforward and obvious. If a reasonable approximation is made, however,

I
I
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more insight on the rlation can be still gained.

5.2.1 Approximation of A(K.) for larger v

If a large value of v is assumed, the expressions for QR, Qi, 0R and 01 can be l

greatly simplified and it is found that they depend on the function values and the

first derivatives of F(x) at the ship's bow and stern. This subsection discusses the I
validity of the assumption and gives the approximate expressions. 3

With the assumption of large v, the approximate expressions of the coefficients in

(5.27) -(5.30) are given first. The sums of pft, qR2,, q 2 1. and qt2,+1 in (5.27) -(5.30) I
consist of i or i + 1 terms. For not too large i, these sums can be approximated by

their first or second term when v is large enough. With this approximation, (5.27)

-(5.30) become I

.2 (.4pR2,(y) ;z: P2  (V) (5.34) 3
1qR,, (V) -=qR.(L,) (5.35)

PN,(V/) P-- (5.36)
V

q1,+1(v) z: (2i + 1)- = (2i + 1)qjt(v) (5.37)
L,2

for i = 0, 1,2,3,...

The errors caused by the above approximation are dependent on variable v and

index i. The approximation errors for i < 7 are plotted in Figures 5.1 -5.4 together

with the curves of pR2 (v),q& (v), p, (,v) and q', (L). It is found from the figures that

given i, there is a value such that the approximation errors will become very small

when v is larger than this value. For instance, the errors approach zero when V is I
much larger than 3 for i < 3 and when v is much larger than 7 for i < 7. Recalling

expression (,.13), the largest power of x in (5.13) is j = 7, corresponding to i = 3, I
I
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3 and j = 15 to i = 7. Since a ship's hull shape is usually smooth, the series F(z)

will be convergent and the coefficient aj in (5.13) will be very small or even can be

neglected for large j. From the figures, Y > 3 is a reasonable assumption for most

real situations where i < 3.

In addition to index i, the range of v needs to be verified to make sure that the

I approximation errors are small enough. To understand which value of Y is reasonable

3 for an approximation, v is here related to the Froude number since the scale of the

Froude number is available in ship building references. By the definition of the

Froude number given in Subsection 3.3.3, it follows that

L L g 1 (5.38)

2 =2 U2 cos6 0 2FcosG (

Usually 0.1 < F, < 0.5 for ships [16]; thus, v ranges from to 2 correspondingly

and increases with the increase in the wave angle 0. From (5.38), the minimum v is

determined by v,.i. ) -. Thus, vy..,, = 2 corresponds to F,, = 0.50, v,,,,, = 3 to

F,, = 0.41, and v .. i - 50 to F, = 0.10. Therefore, the assumption that v > 3 is

suitable for the cases where F < 0.41, in particular, for most merchant ships, for

3 which 0.1 < F, < 0.3 [16].

To simplify the expression of the phases OR and 'k1, substituting the approximate

I expressions in (5.34)-(5.37) into (5.25) and (5.26), it follows that

OR(V) ttan- ] (5.39)

Ol(v) ; -tan-'[] (5.40)

where 1R and f1 are given by

O3 R = ° (5.41)

£ = 0o(2i + 1)a2 +l5

I



72I

By using the triangle relation that tan-'e = 4- - tan-", where "+" is taken for

positive C and "-" for negative C, OR(v) can be expressed in the form

where OR(V) j + 4RD(v) (5.43)

ORp)_a-[L (5.44)I

Now, the phases OR in the real part of the wave amplitude function can be given

from (5.23) and (5.44) by

OR(K.) = - RO(V) (5.45)

In terms of the above relations, the real and imaginary parts of the wave amplitude

function can be now rewritten as

AR(K.) = ±QR(K.) sin(V - 0R(v)) (5.46)

AI(K.) = Q1 (Kf)cos(v - 0$i(v)) . (5.47) I
The signs before Z in (5.45) and before QR in (5.46) are taken as before, i.e., "+" is

taken for positive fiR and "-" for negative fIR.

At this stage, it is now possible to relate the phase parameters, fIR and fI, and I
the magnitude, Q(K 3 ) and Q(K), to the function F(z). To obtain this relation,

break up F(x) and its derivative F'(x) into their even and odd parts, i.e.,

00 2i00 
X4F(z) = F.(x) + Fo(x) = E a2 iX2 i + E a+ 2i+  (5.48)

i-O i-0
00 00

F'(-r) = F.(z) + F.(x) = 2ia2i, 2 '- ' + E"2(2i +1)a 2 ix 2 '. (5.49) I
i-O i-o

The values of F(z) and F'(x) at the end point z = 1 can be evaluated now, and they

are given by

Fo(1) = a2 (5.50)

i=0

I
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! =O
00F.(1) = Fa2i51

i_-0
00

F. (1) = F 2ia,, (5.52)
i-o
00

F:(1) = -(2i + 1)a2,+. (5.53)

I Comparing the above expressions with the definition of /R and 6,r in (5.41) and

(5.42) leads to

N fR = F(1) (5.54)
F.(1)

*=F(1) (5.55)
Fo(1)

I Note that the even and odd parts of a function can be expressed in the function

itself, that is,

F(x) = i[F(x)+F(-x)] (5.56)

F(x) = 2[F() - F(-x)] . (5.57)

I Similarly, the derivative of F(x) can be expressed by

* F.(x) = [F'(-)- F'(-x)] (5.58)

1F(x) = [F'(z)+F'(-x)] (5.59)

By substituting the above relations into (5.54) and (5.55), fR and #I can now be

written as

OR F'(1)- F'(-1) (5.60)

F(1) + F(-1)
SF'(1) + F'(-1) (5.61)

F(l) -F(-1)

3 Similarly, by substituting the relations in (5.50)-(5.53) and (5.56)-(5.59) into

(5.21) and (5.22), the magnitudes of the real and imaginary parts of the wave am-

I



74 I
plitude function can be expressed in the form

QR(K1) = [(F'(1) - F'(-1))2 + v2(F(1) + F( - 1))2 ]  (5.62)

Q1(K) = [(F'(1) + F'(l)) 2 +v 2(F(1) - F()2 (5.63)

As discussed in the last subsection, the variation of the parameters [PR and 61

causes the frequency modulation of the wave amplitude function, and complicates I
the ship length estimation. With the assumption of large v, these parameters are

simplified and are related to only the values of the function F(z) at the ship's bow

and stem. Thus, it is possible to find their values by solving F(l), F(-1), F'(1) and I
F'(-l) from (5.62) and (5.63). Since many values of QR and Q1 at different K, can

be obtained, least square methods can be used.

So far, the wave amplitude function's real and imaginary parts, AR and A1, have

been simplified under the assumption of large v. From (5.60)-(5.63), it is found that

both the magnitude and the phases of AR and Al depend on the variable v =

and the values of the function F(z) at the ship's bow and stem. This resvlt also

explains the phenomena that the wave generated by the bow and stem are dominant

in the ship's wake compared to those generated by other parts of the ship. Thus, I
the ship wave is sometimes considered to be generated by a moving dipole, or a pair

of moving pressure points separated by a distance equal to the ship length. Based

on the approximate expressions, the discussion of the estimation of ship length from I
AR or Al is further given in the following subsections.

5.2.2 Periodic Character and the Ship Length Estimation

As indicated in (5.46) and (5.47), AR and AI represent two signals that are both

magnitude and angle modulated. Their instantaneous angle frequencies, do" and NdK,

I
I
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I Ko are given from (5.24) and (5.45) as

A dOR L 2L R (5.64)T,,R 2 L2K.2 + 4R

A do L 2L,61W d7K; 2 - L2K2+4I (5.65)

These two expressions show that the angle frequencies have a direct relation with the

i ship length and wave number K. In order to understand the variation of the angle

frequencies with K. and their effect on the ship length estimation, a brief analysis

of the above two expressions is given here. Note that wR and wj have the same form

3 except for the subscripts. Therefore, the discussion below will focus only on wi, and

the results can be extended to wR.

For the extreme case where K. approaches infinity, wI approaches a constant I

By determining wj or its corresponding period Ti, the ship length can be determined

byiLO 
=2w 47r 

(5.66)

i where L0o denotes an estimate of the ship length when K., approaches infinity, and

i it depends only on wl or T1 .

For another extreme case where K2 < -+, wj approaches another constant

i (1 - -), and the ship length can be determined in a manner similar to the above

case if wI and #1 are available. If f3 is not known and the estimate Lao is used to

determine the ship length, then under- or over-estimation may occur depending on

3 the value of #I, i.e., positive or negative. It will be over-estimated if fl, < 0 and

under-estimated if #31 > 0.

For general cases, the wave amplitude function is recovered from wave spectra;

i thus, the available 14 may neither approach infinity nor satisfy K, 'R -. In these

cases, the ship length is determined in terms of (5.65). If Lo is used to determinei
I
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the ship length, errors will be introduced. In order to know the error effect on the

estimation, consider the first order derivative of wi. From (5.65),

dw _ 4L 3 3K (5.67)" =d = (L2K.2 + 402) 2

Because K, > 0, w > 0 if #I > 0, and w, < 0 if 61 < 0. Hence, the angle frequency

wl increases monotonically with If., when 01 > 0 and decreases monotonically with

K, when 61 < 0. That is, the period decreases monotonically with K., when /6 > 0

and increases monotonically with K when 1 < 0. Thus, there are two cases for the I
distribution of the zero-crossing points, i.e., the intersection points of the curve Al

and the K-axis. For the first case, where 61 > 0, the zero-crossing points becomes

denser as K increases; for the second case, where 31 < 0, the zero-crossing points

becomes less dense as K_4 increases.

According to the above analysis, there is a rule of thumb to know the trend of

the estimation error when L,, is used to determine the ship length. There will be

an over-estimation if the zero-crossing points become less dense (/, < 0), and there

will be a under-estimation if the cross-zero points become denser (3I > 0). This rule I
is also suitable for the estimation from the curve of AR(K.). The above estimation

error will be reduced as K. increases. Hence, it is suggested that the period T at

larger K be taken to determine Lo. In Section 5.3, several ideas will be proposed

to reduce or avoid the estimation error.

So far, the periodic character and its effect on the ship length estimation have

been discussed. The conclusions show that the sign of the value of P9 R or /31 plays

an important role in the estimation performance, and the sign of the value 13R or

/31 can usually be determined from the distribution of the zero-crossing points. In N
some cases, however, it may not be easy to identify whether the zero-crossing points

become more or less dense. For these cases, the phase difference between the curves I
I
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AR(K=) and A 1 (K) may be used to determine the sign of /R.

To determine the sign of 13R from the phase difference, calculate the phase differ-

ence from (5.24) and (5.45):

I 2 LK, 2
AeO eI-eR-- =+ + (tan- '-' tan'- ) .- = (5.68)

I Note here that before!2', +" is taken for positive 1R and "-" for negative OR. In

the extreme case where K. approaches infinity, the value of (tan-' 201 - tan- ' 2E)LKs LKs

approaches zero, and the phase difference is given by AE = ) if,8R > 0 and AE) = -

if OR < 0. Thus, the sign of OR can be determined according to whether the phase
difference is Z or --.

2 2

I In fact, the above extreme case can be generalized provided that the value

S(tan- 2 - tan-L A&) is in [-, ]. If the phase difference is limited to the range

[-w, ir], then the following rule of thumb to determine the sign of OR is obtained:

I IOR is positive if 0 1 leads GR (AG > 0), and OR is negative if 0i1 lags behind OR

1(Ao < 0).

5.2.3 Periodic Character and the Shape of a Ship's Bow and Stern

This subsection reveals a relation between the periodic character and the shape

I of a thin ship's bow and stern under the assumption of separation of variables. This

assumption allows the ship hull surface function to be written in the separated form

* (x,z)=f(x)h(z) . (5.69)

Note that here x and z are the normalized variables. The function C(x, zo) represents

a waterline curve of a ship at z = zo. For the upper half waterline curve, ((x, z) is

positive. Thus, positive f(x) and h(z) can be found. When ((x, z) is separated as

in (5.69), the waterline curve depends mainly on the function f(x). The shape ofI
I
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the curve, particularly at the bow and stern of a ship, has an effect on the periodic I
character of the wave amplitude function.

With the above separation assumption, the phases and the magnitude of AR and

Al given in Subsection 5.2.1 can be simplified and related to the hull's first and

second order derivatives. For a thin ship, the function F(z) defined in (5.12) can be

written in the following form by substituting (5.3) and (5.69) into (5.12) :

F(x) = f'(x) co(K.) (5.70) 1
where I

9 0O

co(K.) = 7rg ]UK' h(z)eM-'dz .(5.71)I

Equation (5.70) is substituted into (5.60) -(5.63), yielding the following expres-

sions for the phase parameter and magnitudes.

f"(1) - f"(-1) (5.72)
= f'(1) + f'(-1)

f"(1) + f"(-1) (5.73)P ) -- f1-f'(-1)

Q -(K-)I [(f"(1) - f"(-1)) 2 + V2 (f(1)+f'(-1))2] (5.74) 1QR(K,) =lV _(g ]1 (574

Q1(K ) = I"o(,.)I [(f"(1) + f"(-1)) 2 + u2 (f(1) - f'(-1))2] (5.75) 1
where f(i) and f(-1) denote the first order derivatives at the bow (x = 1) and 3
stern (x = -1), and f"(1) and f"(-1) denote the second order derivatives at the

bow and stern.

In terms of the function f(x) and the above expressions, the relation between the

parameters, OR and 01, and the geometric shape of a ship's bow and stern can be

analyzed. According to the geometric meaning of the first and second derivatives of 3
a function, the slopes f'(1) and f'(-1) are proportional to the bow and stern's half I

I
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X

I Figure 5.5: Hull waterline curve y = - (x, zo).

I angles, and f'(1) < 0 and f'(-1) > 0 for the upper half waterline curve as shown in

Figure 5.5. The second derivatives f"(1) and f"(-1) describe the concaveness and

convexity of the bow and stern. When the second derivative at the bow or stern is

positive, the shape of the waterline curve at the bow or stem is concave, and when

the second derivative at bow or stern is negative, the shape is convex. Therefore,

the parameters /#R and /#I depend on the the half angle and the concaveness or

I convexity of the bow and stern. In terms of (5.73), if both bow and stern are convex

(or concave), then /3 will be positive (or negative); if one is convex and the other

is concave the sign of I1 will be determined by whichever shape is dominant, i.e.,

whichever shape is more extreme. A similar conclusion can not easily be obtained

for /#R from (5.72), because the values of f"(1) - f"(-1) and f'(1) + f'(-1) depend

I on the specific derivative values.

I
I
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The above analysis tells us that the half angles and the concaveness or convexity of

the bow and stern are related to the parameters 0R and 61. Thus, the half angles and

the concaveness or convexity of the bow and stern can be predicted if the parameters I
fIR and i1 are known. In fact, however, the sign of the parameters #,R and /31 can 3
also be used to predict roughly the concaveness or convexity of the bow and stem.

Obtaining the sign is usually much easier than obtaining the exact values of #,R and n

,81. As discussed in Subsection 5.2.2, the sign of 8,R and #1 may be found from the

distribution of the zero-crossing points and the phase difference. The following is

the main conclusion about the prediction of the concaveness or convexity of the bow 3
and stern from the sign of j8R and 1i:

1) If 83 > 0, then the bow and/or stern have a convex shape. This is because

f"(1) + f"(-1) < 0 when #I > 0; thus, f"(l) and/or f"(-1) are negative. 3
2) If 83 < 0, then the bow and/or stern have a concave shape. This is because

f(1) + f'(-1) > 0 when fIl < 0; thus, f"(1) and/or f"(-1) (or both) are positive. n

If the sign of the parameter On is also available and if it can be assumed that the

half angle of the stern is larger than that of bow or vice versa, then additional infor-

mation about the concaveness and convexity of the bow and stern can be obtained I
by analyzing (5.72) and (5.73) together.

5.2.4 Ship Length Estimation from the Magnitude of A(K ) 3
In the above subsections, it has 'been assumed that both the real part AR(K ) and

the imaginary part AI(K,,) of the wave amplitude function A(K,) are available. In

many practical situations, however, only the magnitude of the wave function A(K.) 3
is available, and its phase is not known or ambiguous. Thus, AR(K.) and AI(K,) can

not be obtained. This particularly happens when only the power spectrum is known I
I
I
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3 and the phase information is lost. This may also happen in the case where the ship

center can not be exactly determined. This is because when the wave spectrum is

calculated from the wave elevation, the origin of the wave data coordinate system has

a translation with the ship center, i.e., the origin of the reference coordinate system;

thus, an additional phase factor is produced. Since the wave amplitude function is

I recovered from the wave spectrum, the wave amplitude function has an additional

phase factor, too.

This subsection discusses the estimation of ship length from the magnitude IA(Kx)I.

I The periodic character can also be found in IA(K.)I, as in the real and imaginary

parts of A(K ),. For simplicity in theoretical analysis, the square of the magnitude,

denoted by A,,(K), is considered in the following. From (5.46) and (5.47), it follows

3 that

A,(K.) = JA(K.)12 = po(K.) + p(K.) cos(2v - 0.(v)) (5.76)

where

po(K.) = Q2(K.)+Q2(K.) (5.;7)

p(K.) = [Q'(K.) -2Q2(K.)Q2(K.)cos(q(v) - Ro(v))

I +Q4(K.) ] (5.78)

0,,(Y) = tan-l[ QR(K.)sin(2 0,Ro(v)) - Q(K,)sin(24 1 (v)) (5.79)
Q2(K.) cos(20R o(v)) - Q2(K.) cos(20j(v))

Since there is always a p S po, the right hand side of (5.76) is nonnegative for any

K=, and, thus, the absolute symbol is omitted. Am(Kx) looks also like a signal, both

I magnitude and angle modulated, but the -arrier frequency" L is double compared

to that of AR(K 2 ) or A 1 (K-), A. The frequency again contains the information

about the ship length L.

I
I
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To analyze the periodic character of Am(Kz), the magnitude and phase are dis-

cussed further here. Comparing po(K) with p(K.,) cos(2v - '0"(V)), it follows that

po(K ) is a slowly varying component. The estimation of ship length is based on the I
periodic character in cos(2v - 4(v)). Hence, we need to make sure that p(K.) is

also a slowly varying, non-zero component compared to cos(LK. - 'k,(v)). To do

this, the phase difference (4)1 - Onpo) in (5.78) ) is first simplified below. In terms of I
(5.40) and (5.44), (01 - 0)iO) is rewritten as

01(v) - 4,o(v) = tan-'[ I3p) A (5.80)
v - (R ]L- ) I

where the assumption that 2 > /1 and v2 > P, has been made in the last step.

Now, consider the behavior of p(K 2 ) as v -.- oo. In terms of (5.80), cos 2(01 - ORO) I
approach 1 when v becomes very large, and thus the oscillation magnitude of p(K )

approaches (Q2(K.) - Q2(K.)) 21. By using the results in Subsection 5.2.1, p(K)

can be expressed for large v from (5.62) and (5.63) as

P(K.) IQ2 (K.) _ Q2(K4I

4 - F'(1)F'(-1) + ,2F(1)F(-1)1 (5.81)

Thus, p(K.) changes slowly with K, compared to cos(LK& - 4(v)). If v >

1F )F (-I) 1,then p(K.) is approximately equal to ;T IF(1)F(-1).

Now, consider the phase 4. for large v. By substituting (5.40) and (5.44) into

(5.79), o. is given approximately by I
Q/ 3,(v 2 + #2)- Q2/3(v 2 +] ) I
)t-2 Q _ )(v + fo) - Q2(V 2 - f3,)(V2 + #2)

If it is further assumed that v 2 > 32 and v 2 > 3, then 0,, can be approximated

by

4m , -tan-'#. (5.83)

I
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where

/3 = - - (5.84)

Substituting (5.60) -(5.63) in (5.84) yields

lim F(1) F(-1) (5.85)VI0 Ji/=F(l) f(-1)

According to the above analysis, the phase 0, will be small when v is large, thus

LK in the phase plays a dominant role and the periodic character can be observed

in the curve A,,,(Kz). Methods for estimating ship length from Am(Kz) will be

introduced in Section 5.3. One practical example, estimating the length of a real

ship hull model from A,(Kz), will be given in Section 5.4, and the results show that

3 good estimation can be obtained from A.(K).

i 5.2.5 Examples of Ship Hulls

This subsection gives some examples of ship hulls to demonstrate their wave

amplitude function and evaluate the parameter / from the theoretical calculation

and the approximation formulas given in the above subsections.

The first example is Wigley's Hull, which is frequently used in theoretical analysis.

The normalized expression of Wigley's hull is describe by

I(X, z) = ,-(1- X2)(1- zI) x E [-1,1],z E [-1,01 (5.86)

U where z and z are the variables normalized by the half ship length and draft, re-

i spectively, as defined in (5.5) and (5.6). The primes have been omitted for ease of

notation. Substituting (5.86) into (5.8), the wave amplitude function is given by

A(K.) = jQI(K.) cos( LK., + tan-'1 2- (5.87)I

I
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where

Q1 (K.) = c,(K.) ' /4+ L2K 2 (5.88) 3
cl(K) = r K B [p(K) 2 - 2 + 2(1 + p(K) )e - (K) (5.89)

p,(K) = -- K2. (5.90)

Indeed, the wave amplitude function in (5.87) has the form we expect, and its phase

consists two terms. The second term in the phase, -tan- 1 -. , is recognized as OI

as discussed before, and it becomes very small as K, increase. Thus, the first term

7 K., will be dominant. I

Now, let us evaluate the parameter #I from the theoretical result and from the

approximation method directly based on the shape of hull. Comparing the phase in

(5.87) with that in (5.24) and (5.40) yields 01 = 1. To obtain 61 directly from the I
hull shape, consider the hull shape function C(x, z). Since it is separable, 61 can be

directly estimated from f(z) = I - z 2 in terms of (5.73), and has the same value as

above. Here, 61 is larger than zero, thus the zero-crossing points of the curve A,(K.) 3
become denser as K_4 increases and under-estimation may occur.

The second example is the Cosine-Sine Hull with the normalized hull expression

B iI
C(X, z) = (1 + cos(irz) I [ I - sin(z)] x E [-1, 1], z E [-1,0] (5.91)

Similar to Wigley's hull, its wave amplitude function can be found and is given by 3
A(K.) = jQj(K.)sin( K.) (5.92) 3

where I

8rBU2 K3 1#(K 3 ) 1
Qg(J4) g(4r 2 - L 2K2) I,(K. ) + /,(K.) 2 + (Q)2

1 + j1(K) )eI(KZ) I (5.93)
(s(K.) +  (K,) 2 + (Z) 2 I



* 85

3 This theoretical result can be further verified from the analysis of the ship hull

function. For this hull, f(z) = 1 - x and 61 approaches infinity when it is evaluated

in terms of (5.73). Thus, 01 is j from (5.40) and cos(LK, - 01) = sin(LKz).

3 This is the same as the above theoretical result in (5.93). Note that the angle

frequency is a constant equal to L, meaning that theoretically, there will be no over-

U or underestimation of ship length from the wave amplitude function.

The third example is the Wigley-Cosine Hull. Its normalized hull expression is

described by

(Z)Bf(X).(1 z2)  E [-1,1], zE [-1,01 (5.94)

3 where

f = { [1 +cos(rz)] 0<z <0 (5.95)

X-2  -< X < 0

This hull has a discontinuity at z = 0, i.e., the derivatives f"(0),f(4 )(0),.., are

not continuous. Additionally, it is not symmetric in the x-direction, thus the wave

I amplitude function will contain both real and imaginary parts, which are given by

LAR(K.) = QI~o(K--) +QR(K.)cos(i.K - R(,V)) (5.96)

A 1(K,) = QI(K.)cos(LK. - 'kx(v)) (5.97)

where

I Qpo(K.) = cl(K) [2 (5.98)
2(V22r2 1

QR(K.) = -cl(K?) [ 4+(2 7.2) + 1)2 ] (5.99)
72 ( 2 ) V

Qi(K.) = c(K)-- +(2-1 (5.10

1,2 2 2(V2 -r 2)1] (5.100)3 kR(V) = tan-',{v[( 4  4(v 2 )2 (5.101)

01(v) = -tan-'{ 1 [ 1 4(,, (5.102)

V ( 4(V2 T2)
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Here, cl(K.) is the same as in (5.89) and v = LK.. To compare the above result to

that from the approximation method, we substitute f(x) = 1 - x 2 into (5.72) and

(5.73), and obtain the parameters /R and #,r in (5.39) and (5.40), i.e., /R = and m

= , which are the same as the limits of the factors in the square brackets

in (5.101) and (5.102) as v --+ oo. Since PR > 0, the estimation from AR will be

under-estimated, and since 3 < 0 the estimation from Al will be over-estimated if m

no compensation is made. 3
5.3 Methods of Determination of Ship Length

As discussed in previous sections, the wave amplitude function has a periodic

character and the ship length can be predicted from the periodicity. The simplest m

method to predict the ship length is to evaluate the period when K. approaches m

infinity and then calculate Lo, as described in Subsection 5.2.2. Since K_ depends

on the wave angle 0, i.e., K, = Uy-- -, a large K, requires a large resolvable wave U
angle. In real situations, however, the maximum available wave angle is limited by

the data sampling interval and ship speed, which has been discussed in Section 3.3.

In general, the more periods available in the data of A(K), the better for ob- 3
taining a good estimation of ship length. However, the number of the periods or the

available zero-crossing points depends on the maximum available wave angle. The

relation between the wave angle and the number of zero-crossing points can be un-

derstood through a simplified model of A(K,). As seen in the above discussion, the

real or imaginary part of A(K,) has a pattern like cos(LK, - 0), the zero-crossing I
points appear at 3

2- -- (2m -+ 1) for m = mo,mo + 1,mo + 2,-.. (5.103)

and, thus, the wave angles at the zero-crossing points can be expressed from (5.9)

I
Immmam m mmm I~ m mmm mm~ mmmm i m Ilm
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and (5.103) in the form
1

((2m + 1)7r + Ob)F2 (5.104)

where F,, = U is the Froude number and mo is the smallest integer such that

< 1. Thus, the large number of zero-crossing points needs the large

maximum available wave angles available.

Because of these reasons, K. can not be very large in practical situations. Hence,

I the effect of the phase factors OR, q01, or 0,. on the period estimation may not be

negligible. In addition, in order to obtain results quickly and accurately, data pro-

cessing and automatic detection are necessary. In this section, several algorithms

to determine ship length are introduced. Although the discussion about these algo-

rithms focuses mainly on the software realization, it is also possible to use them in

I hardware realizations for real time estimations.

These algorithms include the spectrum method, zero-crossing method, and fre-

quency demodulation method. In the spectrum method, the period is estimated by

I calculating the power spectrum of AR, Al or A,,. In the zero-crossing method, the

zero-crossing points of the curve AR, AI or Am are detected, and then used to find

the period variation with K, for further ship length estimation. In the frequency

demodulation method, the frequency of AR, A, or Am is demodulated, and then

the frequency variation with K. is used to estimate ship length. In the following,

these methods are demonstrated through an example of a Wigley-Cosine hull, since

3 its wave amplitude function contains both real and imaginary parts and thus is a

typical example.

Generally speaking, the behavior of the curves AR and A, is better than A,, thus

the estimation of ship length from AR or Al is easier than from Am. However, in

practical situations, the estimation from Am may be more useful since Am is easierI
I
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Figure 5.6: Spectrum method for the estimation of ship length

to determine than AR or Al.

5.3.1 Spectrum Method

A scheme for the estimation of ship length using the spectrum method is shown

Figure 5.6. In general, the signal AR, A, or Am can be directly inputted to the

system for processing. In many real situations, however, the available data record

are short, only a couple of periods of signal in length, in particular, for AR and Al.

Thus, it is preferred to use A2 and A2 as the input signals, so that the frequency of U
the signals is doubled, and the number of zero-crossing points increases. This will

be helpful to detect the signal periods. Before the square operation is taken, it is

suggested that the signal AR or Al be filtered using a high pass filter to remove the I
direct current component and the component lower than -, as shown in Figure 5.6.

For example, consider AR(K) = QRo(K.) + QR(K.) cos(4.K - OR(v)). After the

high pass filter, the lower frequency component QRo(Kz) is filtered out and the I
signal becomes QR(K:) cos(IK - OR(v)). After the square operation, the signal is
1 2

jQR(K=) (1 - 2 cos(LK. + 2 0R) 1, where cos(LK_ + 20R) is the desired component

and has frequency -L. If the high pass filter is not used, there will additionally exist

the components of QRo(K.) QR(K) cos(-K, - O'R) which is not desired now. After

this, the squared signal will undergo further processing for estimating ship length. I

'I_.
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Figure 5.7: A Wigley-Cosine hull model and its waterline curves y = ±((x, z) at
z = -0.3, -0.2, -0.1, 0.0 meters.

I In the bottom digram in Figure 5.6, a bandpass filter centered at fK. = Lr

is used to remove noise and undesired lower or higher frequency components. For

example, the component QjR(K1,) in the squared signal is filtered out. The cutoff

frequency of the filter can be roughly determined by measuring the period of the

input signal si. Then, the output signal sl(K.) of the filter is used to calculate

U the power spectrum. At this stage, the spectrum diagram shows a pulse at around

fK. =- L If the transverse axis is labeled as L = 2 TfK., then the ship length can

be directly read from the pulse position. In order to determine the pulse's frequency

position automatically and accurately, however, a method called the pulse position

detection can be used. In this method, the pulse is cut by a threshold. The average

frequency position, denoted by fK.O, of the data points larger than the threshold is

then calculated and is used to obtain the ship length, L, = 2xrfKo.

I
I
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1 Figure 5.9: Signal waveforms in the ship length estimation from AR for the Wigley-
Coiehull model using the spectrum method. The estimated ship lengthI is L = 4.825i m with a relative error of 2.6%.
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As a example, consider a Wigley-Cosine hull model with length L = 4.953 meters,

width B = 0.978 meters and draft H = 0.362 meters. The ship's speed is given as

U = 2.229 meters/second. The hull surface and the waterline contour plot are given U
in Figure 5.7. The real part AR, the imaginary part A, and the magnitude JAI of

the wave amplitude function and the frequency variation of AR and Al are shown

in Figitre 5.8. Alt, Al and JAI are calculated from (5.96) and (5.97). In Figure 5.8, I
AwR = 2 -K k and Awl L _ -,r.,. A*WR and A-W.,

dK 2--" dKv dKz 2 dK

are the approximations of Awit and Awl, and are calculated from (5.64) and (5.65)

with O3R =442 and fli = I2
The signals at each stage in Figure 5.6 are giN cn in Figure 5.9. The input signal

Si is the squared AR, the real part of the wave amplitude function. There are 128

data points, each separated by an interval of 0.0445 rad./meter. K, ranges from

1.974 to 7.626 rad./meter, corresponding to the wave angle from 0* to 75*. The

cut-off frequency of the high pass filter is 0.1 Hz, and the cut-off frequencies of the I
bandpass filter are 0.5 and 1.5 Hz. The spectrum is directly calculated according to

the definition given in (11] using the FFT algorithm. The spectrum, S2, has been

normalized by the value at the peak, and the abscissa has labeled directly the length I
scale instead of 2 7rfK. for easy observation of the length estimation. Cyclic spectral

analysis methods and other advanced spectral analysis methods may be used for

high performance [35] - [38]. Here, however, a simple method is used to increase the

spectrum resolution, that is, the data length is increased to 1024 points by padding

zeros. The computer calculation gives the ship length estimation as L = 4.825

meters. It is under-estimated as predicted from theoretical analysis, with a relative 3
error of 2.6%. I

I
I
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Figure 5.10: Zero-crossing method for the estimation of ship length.

I 5.3.2 Zero-Crossing Method

3 A scheme for the estimation of ship length using the zero-crossing method is

shown in Figure 5.10. Similar to the spectrum method, the input signal is considered

to be Am(Kz) or the filtered and squared signal AR(KZ) or Az(K,). The difference

is that following the bandpass filter, the signal is clipped instead of being used to

calculated the power spectrum. The clipper is set to have a threshold such that the

I signal s2(K.) is a square wave signal with a magnitude close to zero. Then, the

clipped signal is differentiated, giving 33 = -dK The differentiation is realized by

using the three point Lagrangian interpolation method [341. The differentiated signal

3 is combined with the pulses located at zero-crossing points. To obtain the periods,

the positive pulses are taken using another clipper. The positive pulse signal S4 (K,)

is then used to calculate the periods at different K,. Similarly, the pulse position

detection method is used here for fast and accurate calculation. The interval between

two pulses is the period at the corresponding K-. The first and last pulses may not be

I counted to avoid false periods at the beginning and end of the input signal. Finally,

these periods are used to calculated the ship length.

In the calculation of ship length from the periods, different strategies can be

I considered. If the periods {TK,,i = 1,...,I} do not form a monotonic sequence

I
I
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Figure 5. 11: Signal waveforms in the ship length estimation from Al for the Wigley-

Cosine hull model using the zero-crossing method. The estimated ship

length is =5.042 m with a relative error of 1.8%.
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3 and their lengths appears to be random, then the ship length is calculated from the

average of the period length, that is, LX =, TK5 j. This case may happen

in the estimation from A,,(K 3 ), or the magnitude of the wave amplitude function.

If the obtained periods {TK.Z, i = 1,...,1} do form a monotonic sequence, then the

ship length is calculated from the last period, i.e., LZC = 2 1rTK.,. In this case,

I the estimation error trends can be predicted in terms of whether the sequence is

3 monotonically increasing or decreasing. If the variation in periods is small near TK,

then the error will not be large. To achieve high accuracy in the estimation, the

I following method may be used if at least three zero-crossing positions are available.

For the signal A,,, squared AR or Al, the phase is given by ( ;Z LKg + -, where

fl denotes f0,, PR or #I3. Since the cosine function has a phase period 2nir, e can be

written in the form

LK.i + 4- + 2(i- 1)ir i (5.105)

where I is the number of zero-crossing points K, to be considered. If three or more

I K.i are available, then the ship length and 83 can be found by solving this set of

3 equations. Least square methods can be used if more than three points can be

available. As an example, a three-point formula is given in the following. Assume

3 that there are three points K 1, &(2 and K.3 . The ship length and P3 are estimated

* from

= 2r ( K . 3  K .,_)(5.10
K.3 - K.1 K . 3 - K .2  K.2-K 1 ) (5.106)

SL 2 K 3 - 2K 2 + K 1  (5.107)4 14 - 2 +1

The above discussion considers the signal s4(K,) with only the positive pulses. If

the negative pulses are considered too, then (5.105) can be modified as follows.

LK4, + 1-9 = (2i- 1)r i = 1,...,li (5.108)

LK~r-(2j)I
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Figure 5.12: Frequency demodulation method for the estimation of ship length. i

where 1' is the number of zero-crossing points Kj to be considered. L and # can be I
derived in the same way.

As an example, consider the same Wigley-Cosine hull model. Here, the input is

A1 . The signals at each stage in Figure 5.10 are given in Figure 5.11. The cut-off fre- i
quencies of the bandpass filter are 0.4 Hz and 11.2 Hz (Nyquist frequency). According

to the calculated results, the zero-crossing point position is 3.55372,4.79989,6.04606,

without considering the first and last points. The periods are 1.24617 and 1.24617.

Thus, the estimated ship length is L = 5.042 meters. It is over-estimated as predicted

from theoretical analysis with a relative error of 1.80%. i

5.3.3 Frequency Demodulation Method i
In the above zero-crossing method, the periods, which vary with K, are estimated I

by locating the position of the zero-crossing points, and the ship length is then

calculated. In the frequency demodulation method, the instantaneous frequency

is detected, and then the ship length is estimated. The scheme for the frequency

demodulation method is shown in Figure 5.12. The first four operations in the

diagram transform the input signal si, an unequal-amplitude angle modulated signal,

into an equal-amplitude angle modulated signal; the last four operations detect the

I
I
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"carrier frequency" , and then the ship length is calculated.

In order to obtain an equal-amplitude signal, a clipper is used following the

bandpass filter. Instead of determining the position of the zero-crossing points as

in the zero-crossing method, the purpose for clipping sl(K,) here is to obtain an

equal-magnitude square signal. Thus, the threshold of the clipper is large, compared

I to that in the zero-crossing method. Following the clipper, a bandpass filter is then

3 used to obtain an equal-amplitude angle modulated signal. After the amplitude is

normalized, the unit-amplitude angle demodulated signal s4 has the formI
s4(K) = cos(LK - 20) (5.109)

where =-tan-'LK. and/ denotes 3 n, O3R or /31. The "carrier frequency" - is

desired and will be recovered.

In order to detect the frequency information, the differentiation, square operation

and filtering are further used. The output of the differentiator is the signal

I =-(L) - 4L# )in(LK - 20) (5.110)
L2K2 + 4 # 2 )

I The magnitude of s contains the desired frequency information. The above differ-

entiation can be realized by the Fourier transform method. The method is based

on the property of the Fourier transform. That is, for an arbitrary function f(z),

its derivative is equal to the inverse Fourier transform of jw.F{f(x)}. A discussion

of the design of an optimal FIR differentiator can be found in [33]. To obtain the

frequency information from the magnitude, a squarer is used and the result is

I 16 (K)=s2=1(L_ 4L# )2( - cos(2LK, -40) (5.111)
L 2 K2 + )21 +42

I Then, a low pass filter is used to filter out the high frequency component cos(2LK= -

I
I
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Figure 5.13: Signal waveforms in the ship length estimation from A,, for the Wigley-

Cosine hull model using the frequency demodulation method. The esti-
mated ship length is Lfd = 4.949 meters with a relative error of 0.08%.
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I 4 ). The output of the filter is

87( K 1) =I(LL_ 4L/ 2-S(. L-L2K2 + 4 $ )  (5.112)

This is the desired frequency information containing the ship length. Similar to the

zero-crossing method, several strategies can be used to estimate the ship length. If

U ¢s(K.) is not a monotonic function, then 6 is not a constant and the average value

3 of s7 (K,) can be considered. Since usually L2K > 41,6 - 2I, the estimate of ship

length is given as

UL 2-97 (5.113)

U where j7 is the average of the signal s 7(K.). If s7(K=) is a monotonic or almost

monotonic function, then 8 can be considered as a constant and the ship length can

be obtained by solving (5.112). Since there are two unknowns, L and s, in (5.112)

I and many function values of s7(K.) are available, least square methods can be used

I here.

As an example, consider the Wigley-Cosine hull model again. Here, the input is

I Am. The signals at each stage in Figure 5.12 are given in Figure 5.13. The cut-off

frequencies of the filters are 0.4 Hz and 1.5 Hz for the first bandpass filter, and 0.5

Hz and 1.5 Hz for the second bandpass filter. The cut-off frequency for the low pass

3 filter is 0.03 Hz. The signal 87 in the diagram represents the frequency of A,,, the

ordinate has been directly labeled with the length scale L = 2 7rfK. instead of fK.

for easy observation of the estimated length. The dotted line is the average of the

frequency, which gives the estimation of ship length. The estimated ship length is

= 4.949 meters with a relative error of 0.08%. The standard deviation of the

I variation of 21rfK. is 0.166 meters.

I
I
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So far, three methods for the estimation of ship length have been introduced. In

general, the spectrum method is a fundamental and powerful method, in particular

for signals with noise or other undesired frequency components. The zero-crossing

method and frequency demodulation method may be used to achieve more accurate

results. In real situations, the methods can be combined in use. For example, the

spectrum method may be used first to obtain a rough estimation, then the result can

be refined using the zero-crossing method or the frequency demodulation method.

5.4 Estimation of the Quapaw Hull Length

This section applies the above theoretical analysis and methodology to a practical

problem, the estimation of the Quapaw's length. This ship model has length L =

4.953 meters, width B = 0.978 meters and draft H = 0.362 meters. Here, the

assumptions that BIL < 1 and B/H is small are not valid; thus, this is not a thin

ship, that is, the hull is not narrow and deep. The hull surface and the waterline

contour plot are given in Figure 5.14. The hull was towed in a tow tank with a

constant speed U = 2.229 meters/second (7.31 feet/second). Three wave elevation

cuts were measured with three independent sensors fixed in the tow tank as the ship

hull passed. These wave cuts, shown in Figure 4.9 in Chapter 4, are parallel to the

ship centerline and at the distance of yj = 1.219, Y/2 = 1.524 and Y3 = 1.8288 meters

from the centerline, respectively. The wave data have been preprocessed to remove

the pulse-type noise caused by instrumentation and the stationary waves caused by

the finite length of the tow tank.

Generally, four steps can be taken for estimating the ship length, that is, 1)

calculate the FFT of the wave elevation 71(x, yi); 2) calculate the wave amplitude

function A(K,); 3) roughly guess the ship length from the curve A(K,); 4) estimate I
I
I
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IFigure 5.14: Quapaw hull model and its waterline curves y ±(x, z) at z -0.3,

-0.2, -0.1, -0.001 meters.

I the ship length using the methods introduced above. Figure 5.1.5 gives the FFT of

71(--, y3), JA(K.) I and the spectrum of detrended IA(K-) I for the data RUN3.

I Analysis of the plots in Figure 5.15 is given now. In the figure, (a) plots the

I magnitude of the FFT of the wave amplitude function; (b) plots the part of (a)

to see the detail for lower spatial frequency components, and the abscissa has been

I relabeled as the wave number K., which is equal to 27ru here. It is found from

I (b) that there are two peaks which are much larger than others. The first peak

in Figure 5.15(b), at K. = 1.974 rad./meter, corresponds to the transverse waves;

I the second peak, at K. ;- 2.5 rad./meter, corresponds to the diverging waves. This

i second peak and is larger, and, thus, the wave component it represents is dominant in

the wave cut. The dominant wavelength can be estimated to be \ = ! -=2.5 meters.

I According to the theoretical analysis in Chapter 3, the wave number in the x-direction

I *.
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is K= -KO The transverse wave crests are almost perpendicular to the

ship centerline, i.e., 0 % 0; the transverse wave number is K0 = 1.974 rad./meter.

Since the wave cut is parallel to the the ship centerline, the apparent transverse

wavelength in the wave cut is the same as KO. However, the apparent diverging

wavelength in the wave cut is larger than the diverging wavelength itself because the

I wave cut is not perpendicular to the diverging wave crests.

3 An empirical formula to guess the apparent diverging wavelength in wave cuts or

to guess ship length may be obtained from a simplified model of the wave amplitude

I function. To do this, the relation between the wave amplitude function and the FFT

of the wave elevation cut given in (3.50) is rewritten by changing variable 0 into K.

in the form

i A(K,) = H( )& L f/U4K g2 eKf g2 l VrU"' 2 (5.114)

I where H( -;) is the Fourier transform of the wave cut 17(x, yo). When U4K2 > g2,

the magnitude of A(K.,) is approximated as
1 2 K:

JA(Kj) ::t 1-K.2 Iu(L)l (5.115)Ir~ 2-x

or the magnitude of H(-) is written as

IH( )l " irKo IA(K.)I (5.116)

Now, consider a hull symmetrical in length. Its wave amplitude function can be

described as a very simple form, A(K.) = jQ cos[ k(K, - Ko) + OKo], where OK. is

the phase at K- = Ko and Q is a constant. A(K.) approaches zero when K, < Ko

since the minimum wave number is KO. Although A(K:) has a cosine form, IH(K)I

I decays very fast as K, increases because of the factor Thus, the first maximum

I
I
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as K. > Ko is important, and it is approximately given as

K.... - o + x V(5.117) 1
where ic can be between 0.5 and 1.0, depending on the phase OK,- For example, r.

can be taken as 1.0 for OK. -, (2n + 1)! and 0.5 for O6K0 ; (2n + 1)4. From this

empirical formula, the apparent wavelength in a wave cut can be roughly estimated,

if the ship length is known, using 2 v 2 w

A. = -- (5.118)

2_F L (5.119)I

1 + KrF2

where F, is the Froude number. The ship length can be roughly estimated using I

LzX V (5.120) U£ K.,.. - Ko I

From the FFT of the wave elevation cut in Figure 5.15, for example, K,. - 2.5,

thus the ship length is roughly estimated as 3.14 to 6.28 meters.

Figure 5.16 (c) is the magnitude IA(K,)I of the wave amplitude function. It is I
not so smooth as the one in the above example of the Wigley-Cosine hull model.

However, the peaks labeled with P and P2 still can be recognized as a period, which

is approximately equal to 1.5 rad./meter. Thus, the ship length can be roughly 3
estimated as L &M = 4.2 meters.

To analyze the frequency components of IA(K4) in detail, the data IA(K)l is

detrended and then its power spectrum is calculated. In order to be consistent with

the ship length scale, the abscissa has been labeled as 2wrfK. instead of fK., the

frequency corresponding to K,, in the spectrum diagrams given below. According I

to the theoretical analysis in the above sections, AR(K.) or AI(K) contains the
component cos(LK. - 4), and, thus, has a dominant peak at k in its spectrum;

I
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I IA(Kz)I contains the component cos(LK,- 0), and, thus, has a dominant peak at L in

its spectrum. All the analysis is based on the linearized free-surface condition and the

thin ship assumption. In the spectra of IA(K.)I calculated from real ship wave data,

3 however, there may exist many peaks presenting different frequency components,

as seen in Figure 5.15 (d). In this diagram, the peak at around 5 meters is the

I second harmonic component L, representing the ship length. The basic component

at 4 is a small peak here since this spectrum is of IA(K)I. In addition to these two

components, there are several higher order harmonic components and other frequency

U components. These additional components may result from the nonlinear effects of

ship waves, which have been neglected in the above theoretical analysis. These

nonlinear effects on the wave elevation are very small, and wave components caused

by the nonlinear effects have a very small energy. However, they locate at the end of

higher frequencies in the wave elevation spectrum; thus, these components are greatly

enhanced in IA(K)l because of the factor K. in IA(K.)I 1 ±K.2H(- ). This is

3 the situation found in Figure 5.15 (d), in which a couple of frequency components

are larger than the component at 2 7wfK, = 5. Thus, we need to guess the ship

I length first using the first two important peaks in the diagram of IA(K) and using

the empirical formula (5.120) to know which component is our desired one in the

spectrum of IA(K4).

I The results of ship length estimated form the three wave cuts of the data RUN3

are shown in Figures 5.16, 5.17, and 5.18. The magnitude IA(K)I of the wave

amplitude function is first calculated from the FFT of the wave cut, and then it

is detrended. The detrended signal, denoted as Ad(K,), is filtered by a bandpass

filter with bandwidth 0.4 Hz and central frequency 0.8 Hz. Finally, the filtered

signal, denoted as Af(K.), is used to estimate the ship length. The three methods

I
I
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methods wave cut A wave cut B wave cut C 3-cut average rms error U
L,p (CL) 4.746(4.2%) 4.812(2.8%) 5.347(8.0%) 4.968(0.3%) 0.330(6.7%)

L (eL) 5.240(5.8%) 5.190(4.8%) 5.290(6.8%) 5.240(5.8%) 0.291(5.9%)

Lid (CL) 4.959(0.1%) 4.946(0.1%) 15.078(2.5%) 4.994(0.8%) 0.084(1.7%) I
Table 5.1: Quapaw hull length estimated from the three wave cuts of RUN3 using

the spectrum method, zero-crossing method and frequency demodulation

method. The unit of the ship length in the table is meters, and the true
hull length is 4.953 meters.

introduced in the last section are used here. The sFp,ctrum of A1 has been normalized

in the figures. The results of the ship length estimation is listed in Table 5.1, where

L , L,, and Lfd denote the estimated lengths using the spectrum method, zero-

crossing method and frequency demodulation method, respectively, and eL denotes

their relative error. According t- the statistical analysis of the nine lengths estimated

from the three wave cuts using the threu methods, the mean of the estimated ship 3
length is 5.068 meters with a relative error of 2.3%. The root mean square (rms) is

0.243 meters with a relative rms error of 4.9%. This example shows that although I
the theoretical analysis and the methodology are based on the linearized free-surface 3
condition and the thin-ship assumption, they can be used for estimating a non-thin

ship's length from real wave data, and good estimation results can be obtained. I
I
I
U
I
I
U
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Figure 5.16: Quapaw hull length estimation from the tow tank wave cut RUN3-A
at y = 1.219 m using three methods. The estimated ship length is
, = = 4.746 m ( CL = 4.2% ) for the spectrum method, L, = 5.240 m

( L = 5.8%) for the zero-crossing method, and Lfd = 4.959 m (CL =

n 0.1%) for the frequency demodulation method.
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Figure 5.17: Quapaw hull length estimation from the tow tank wave cut R.UN3-B
at 9 -- 1.524 m using three methods. The estimated ship length isI

= 4.812 m (EL. = 2.8%) for the spectrum method, L2 c 5.190 mI

(EL. = 4.8%) for the zero-crossing method, and L1d = 4.946 m (EL =
0.1%) for the frequency demodulation method.I
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Figure 5.18: Quapaw hull length estimation from the tow tank wave cut RUN3-C
at y = 1.8288 m using three methods. The estimated ship length is

Lp = 5.347 m (CL = 8.0%) for the spectrum method, L,, = 5.290 m

(eL = 6.8%) for the zero-crossing method, and Lfd = 5.078 m (CL =

3 2.5%) for the frequency demodulation method.
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CHAPTER VI

EXTRACTION OF SHIP HULL GEOMETRY I
INFORMATION I

I
The prediction of a ship's hull geometry from the ship generated wave pattern

can be considered as an inverse Kelvin wake problem. Solutions to this problem are I
becoming more practical with advances in remote sensing technology.

The idea used here to extract a ship's hull shape is based on the relation of the

ship hull shape and the wave amplitude function under the thin-ship assumption,

and the relation of the wave amplitude function and the ship wave spectrum. These

relations have been discussed in the previous chapters, thus, this chapter focuses U
on the technique to extract a ship's hull geometry shape from the wave amplitude

function. Mathematically, the problem is to find the function of hull surface C(X, z),

given the wave amplitude function A(O) and the integral I
A'(0) = HfI fo 2Cx'z)j e)z0(9)zdd (6.1)

where v and # have been given in (5.9) and (5.10), and A'(0) is defined as

V,7U2
3A'(0) !2-- cos (O)A(O) (6.2)2g

In the above, (6.1) is obtained from (5.8) under the thin-ship assumption. x and z

are the variables normalized by the ship length and draft, and j r e)' ek e)z is a kernel

function with parameter 0.

I
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To solve this continuous inversion problem, we prefer to convert it to a discrete

inversion problem first, and then solve it using discrete inversion techniques. The

reasons for this are that it is difficult, in general, to solve a continuous inversion

problem analytically and that the values of the wave amplitude function are usually

available in discrete form. To obtain the discrete form, the integral may be approxi-

i mated as a summation using the trapezoidal rule or some other quadrature formula.

In this hull inversion problem, however, the spectral method is adopted instead of

the above quadrature methods. In the spectral method, the unknown function is

I approximated as a weighted summation of some basis functions. Because the basisu functions are known and the integrals associated with them can be computed, solv-

ing the continuous inversion problem becomes a matter of solving a set of discrete

equations to determine the weights or coefficients. The advantage of the spectral

method is that the number of unknowns to be determined can be reduced greatly.

This is especially important for two dimensional inverse problems.

When both the magnitude and phase of the wave amplitude function are well

known, the ship hull inverse problem becomes a linear inverse problem. The singu-

I larity of the kernel matrix in the linear problem and noise of the observed data may

have severe effects on the inversion results, and thus special techniques may have

to be considered. In particular, the methods of constrained linear inversion and the

i maximum likelihood estimation with constraints will be considered in solving the

* ship hull inversion.

However, if only the magnitude of the wave amplitude function is available, then

a complicated non-linear inverse problem must be handled. For the hull inverse

problem, the non-linear inversion is solved based on the criterion of the maximum

likelihood estimation with constraints using optimization techniques. Examples of

I
I
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linear inversion and non-linear inversion will be demonstrated for both mathemati-

cally well-defined ship hulls and the model of the real ship Quapaw.

In the following, bold lowercase letters denote vectors, and bold uppercase letters

denote matrices.

6.1 Spectral method

In this section, the spectral method is used to convert the continuous inverse

problem to a discrete inverse problem. In the following, the solution of the inverse

problem, C(z, z), is approximated by a weighted summation of basis functions. Insert-

ing the summation into the integral equation (6.1) yields a set of algebraic equations

for different values of the parameter 0. The solution of the algebraic equations gives

the weights, or coefficients, of the summation, and any value of C(z, z) in the specified

region can be evaluated from the summation of basis functions.

For this goal, let the basis functions in the z- and z-directions be Oj(z), i - I
1,2,... ,M and 6ji(z),j = 1,2,.-. ,N, respectively. C(x,z) is now expressed in the

form

M N

C(z, z) = , a~jj,(x)3j~(z) (6.3)
ij=1 I

and its partial derivative with respect to x is given as

OC(z, Z) '-=- E aiJi()/lJ(z) (6.4)

where 4,(z) denotes the derivative of 4.,(z). Substitution of (6.4) into (6.1) gives the I
following linear equation with the coefficients aij to be determined:

M N

A'(0) = Wj= , ,(6) +jW,(O)] , (6.5)
i=1 j=1

I
I
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where

WRW,(o) - WXRi(O) WZj(8) (6.6)

w 1i,(0) Wxi(O)Wz(O) (6.7)

WX~i(e) J f j(x) cos [v(O)xldx (6.8)

Wxi,(O) / 4,(x) sin [v(O)zjdz (6.9)

Wz(0) Hf 8j(z)e"(S)xdz (6.10)

In general, the amplitude function A(8) is complex, and, thus, A'(0) is too. If

A'(O) ! Re{A'(O)} and A'1(0) it Im{A'(O)} denote the real and imaginary parts,

respectively, then (6.5) gives

M N

A() = ,A,j WRij(O)
ij=1

M N

A',(0) = , a-- j Wj (0). (6.11)

=1=

Given K values of 0, there is a set of equations

M N
A',(Ok) = , ai, Wp4j(#k)

i=1=

M N
A#I(Ok) = ai, Wli,(Ok)

I i=il j=l

k=1,2,-..,K .(6.12)

I In order to get a unique solution of the M x N coefficients, aij, there must be at leastI MxNequations. Thus, the number of parameters Ok. should satisfy K >_ 1M x N.

The above equations can be written in a vector and matrix form by rearranging

I the subscripts. According to the rule that the subscripts (({ij},j = 1, 2,..., N),i =

1,2,...,M) are mapped to ({l},l = 1,2,--.,MN), and the coefficients {(aj,,j =

1,2,.--,N),i = 1,2,.-.,M} are mapped into {b, I = 1,2,--.,MN}, (6.12) can be

I
I
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written in the form I

a=Wb (6.13)

where a = [A'R(O), A( 2),... , AR(O), A,(01), AI(0 2),... , A'1(OK)] T with dimension

2K x 1, b = [b, b,... , bMN]T with dimension MN x 1, and T signifies transpose.

The matrix W may be called the kernel matrix as it is related to the kernel function.

It has dimension 2K x MN and is given as

WAIII WJ 2 1 ... WreN, W211 .. WRF4.-1)N1 WpRM1  ... WRMNI
WRI12 WR122 ... WA1N2 WR212a ... WJI(M-I)N2 WRU12 •-" WRMN2

W wR1" K WR12K ... WRINK Wmix "" WSRM-1)NK WRWh ... WRMNK (6.14)
W11 1 1  W1 12 2. WhN1 W121 1 W.(M.. -)N1 Win. Wim
WI1 1 2 Wn ... WziN2 W121 2  ... WI(M.-I) WZI12 ... WIMN2

W 2.1K W, 2K -. MINX Wj121 ... W,(M-)Nx WIMIK ... WIMNK

where Wjik and Wriik denote Wii(O) Wfii(Ok), respectively.

Now, the continuous inverse problem has been converted to an algebraic inverse

problem. In (6.13), a is usually obtained from measurements, W is known from

construction, and b is to be solved for. The kernel matrix W depends on the wave

angle, ship's length, draft and speed, and the choice of the basis functions. Thus,

the next step is to select a set of appropriate basis functions.

6.2 Selection of Basis Functions I
The most preferable basis functions should have the properties of easy compu-

tation, completeness and rapid convergence [40]. The property of easy computa-

tion means not only that the basis functions themselves should be easily calcu-

lated, but also that they should make the integrals in the elements of the above

matrix,WxRj(O),WxR(O) and Wz,(O), be analytically integrable. Thus, costly nu-

merical computation time can be avoided. The completeness of the basis functions I
I
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make it possible for the solution to be represented to an arbitrarily high degree of

accuracy by increasing the number of basis functions. The property of rapid con-

vergence allows the number of basis functions used to be as small as possible. In

addition, the geometry of the problem is another fact that needs to be considered

when the basis functions are selected. Study on spectral methods indicates that

I the best choice for 95% of all applications is an ordinary Fourier series or a set of

Chebyshev polynomials. For the non-periodic problem, the Chebyshev polynomials

are extremely robust and give good results in almost all situations (40].

I Based on the above principles, the Chebyshev polynomials T,( ) are chosen in

both the x- and z-directions. The explicit expressions of the Chebyshev polyno-

mials T,,( ) are given as

I T0() = 1

TI( =

T2(t) = 2 2 1

I T=+() 2tT,,(t) - T-_ (t) (6.15)

t E[-l,] ; n>l .

I They have two main properties: 1) T,(e) is even for even n, and odd for odd n; 2)

T.(±I) = 1 for even n, and T-(±1) = 1 for odd n.

The basis functions Obi(x) and 8j (z) are constituted by the Chebyshev polynomi-

als. One strategy to select the basis functions is to set

I0i(x) = T(z) , i= 1,2,.-. ,M (6.16)

I i(z) = Tiji(z) , j=1,2,..-.,N. (6.17)

I
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The reason not to include the lowest order of the Chebyshev polynomials, To(x), in

the basis functions of the z-direction is that the derivative of To(z) = 1 is equal to

zero, and thus whether To(x) is included or not has no effect on , in the integral I
(6.1). Even if To(z) is included, its coefficient can not be determined by solving

(6.13). Thus, a constant must be finally determined according to the boundary

condition of C(x, z) after the coefficients aq3 are found. m

In fact, the function representing the ship hull shape, C(z, z), is zero on the ship

hull boundary or outside of the boundary on the z - z plane, that is, in the normalized

coordinate system, m

C(1,z) = 0, (6.18)

C(z,-1) = 0. (6.19)

These conditions can be imposed on the basis functions with the advantage that no

constant needs to be determined. According to this idea, the basis functions in the 1
z-direction are set to be

I T+(z))-1 ifiisodd
=) T+ 1(x) - z if i is even

i= 1, 2,--. ,M, (6.20)

If it is desired that the boundary condition in the z-direction given in (6.17) be

imposed on the basis functions, then they should be set to be I
T(z) +1 ifj is odd;

T(z) - 1 if j is even

j =1,2,-..,N. (6.21)

The proper choice of basis functions may not only make the elements of the kernel

matrix W easier to compute, but also make the discrete inverse problem simpler. In I
I
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solving the inverse problem given in (6.1), the basis functions will be chosen from

(6.17) and (6.20). The basis functions given in (6.20) have the property that 4Oi(x)

is even for odd i, and odd for even i according to the even and odd property of the

Chebyshev polynomials. Thus, i(x) is even for even i, and odd for odd i. This fact

further results in that WxR,(O) = 0 for odd i and Wxji(6) = 0 for even i since the

I integrands in the symmetric integrals (6.8) and (6.9) are odd. These properties of

Who(O) and W 1i,(O) can be used to simplify the kernel matrix W in (6.14). To show

this, consider an example with M = 4, N = 2 and K = 4. In this case, the matrix
I W is given as

0 0 Win1 1 Wiwi 0 0 WPWW0 WR4 21 1
I0 0 WJR212 W~JW 0 0 WRt4 1 2 WPA2 20 0 WA q 3 WRM 0 0 Wp 4 33 WJZ423

W= [0z, 0 W214 WaR2 0 0 WWRe o W1124 (6.22)
IWsZ W1122 0 0 W1312 Wr322 0 0

W1123 WrU 0 0 W 31 3 W13 2 3  0 0
WZ114 WZ124 0 0 WZ314 W1324 0 0

Observing the pattern of the above matrix, we can find that if the columns of the

matrix are rearranged, then the matrix can be written in the form

WR2j1 W 2 1 WRi4 1, WR42, 0 0 0 0
WJU 1 2 WA22 WR412 WR4 2 2  0 0 0 0
WJR213 Wj22 Wit4 ia WR4 23  0 0 0 0w= wR2n. WA224 wJU. WR424 0 0 0 0 (6.23)

0 0 0 0 W1111 W1121 W1311z W-321

0 0 0 0 W 11 12 Wrin W 3 12 Wr322
0 0 0 0 WZ113 W,123 Wr33 W323
0 0 0 0 Wzii Wr12, WZ W1324

The new pattern of the matrix shows that the linear equation given in (6.13) can

be split into two independent sets of linear equations with smaller dimensions if the

matrix elements are rearranged according to the rules that for Wmipk, the subscripts

{({ij},j = 1,2,...,N),i = 2,4,... ,M'} are mapped into ({l},/1 = 1,2,...,L1),

where M' = M if M is even, and M' = M- 1 if M odd, and where L, =- MN;

that for WIijk, the subscripts {({ij},j= 1,2,... ,N),i = 1,3, .. -,M"} are mapped

into ({12},12 = 1,2,... ,L 2), where M" = M- 1 if M is even, and M" = M if M

odd, and where L2 = --N. In addition, the coefficients {(ai,j = 1,2,-. -,N),i -

2
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2,4,---,M'} are represented by {c,l = 1,2,... ,L 1}, and the coefficients {(aij,j

1, 2, • • •, N), i = 1,3,.. , M"} are represented by {d1 , 1 = 1, 2,. • •, L 2}. After the sub-

scripts are rearranged, the two independent sets of linear equations can be expressed

in the matrix forms

aR = WR c (6.24)

al = W 1 d (6.25)

where I
aR = [A(O1),A(02),. ,A'(OK)]T (6.26),l = A 1, |

a - [A(O 1),A,(02),"" , AI(OK)] T  (6.27)

c = C1, c2,...,CL, 1] (6.28) I
d = [d,d 2,...,dL2]T (6.29) U

The matrix WR with dimension K x L1 and W, with dimension K x L 2 are given

byU

wr WmR2 ... Wm1 WR 1 1  . "'" WXc-2)1 wAM'w1 w 1' "

W ml2 W ... WmN2 WR412 ... W '- 2 )N2 WRMil 2  - WuR N2 (6.30)

WR21 K WR2 C ... W2NK WR41K "" Wi(MI-)NK WRMelK ... WRM'NKj .

andI

rWZIII W1121 ... W11111  W1311 . Wr("2N Wall WM#N
w W ... w11, W. (M " ... WIIN2 W312 "" WZ(,-2)N2 WIM"12 "'" WIM (6.31)

W! I
w hi K W11JI ... WI NK W=31K ... wr(M,,2) , w,,"'" wIMNI

Using the above mapping rule of the coefficients aii, the hull surface function can

be expressed in a concise form

(x,z) = h T(x,z)c + hT(x,z)d (6.32)

I
I
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where vectors h.(x, z) and ho(x, z) are defined as

h'(x,z) = [03(x)/3(z), 02(x)#2(z), ... 02(x)#N(Z),

b4 (X).81 (Z), ... ObM,(Z)#1 (Z), -... ObM,(--),8N(Z)) (6.33)

h.'(x,z) = [OS(x)#6(z), Oj(x)#(z), ... TlN(z),

I 03(X)01(z), --- OM,(-T)#I(Z), --- OM,,(X)#N(Z)] (6.34)

In (6.32), h T(X, z)c represents the odd part and hj(z, z)d the even part with respect

to x if the basis functions Oi(x) are selected to be even for odd i and odd for even i

as in (6.20).

I So far, two sets of linear equations have been established for determining the

vectors c and d, and thus the coefficients aij. If a ship hull is assumed to be bow-to-

I stern symmetric in its longitudinal distribution of volume, then C(x, z) = C(-x, z),

and thus c = 0, and aR = 0 since the real part of the wave amplitude function is

equal to zero. In this special case, only (6.25) needs to be solved.

For the basis functions composed of the Chebyshev polynomials, both j(x) and

fj(z) are polynomials of z or z, thus Wxrj, Wxji and Wzj in (6.8)-(6.10) are com-

binations of integrals like

I

=. x- cos[v(O)x)] dx (6.35)

I1

I X" sin[Y(0)x)] dx (6.36)
En Fzn ei(')zdz (6.37)

All of these are explicitly integrable, and Cn = 0 for odd n and Sn =0 for even n.



120 I

6.3 Effects of Singularity and Data Error on Linear Inver-
sion I

Theoretically, once the measurement data aR and al are given, and the elements

of the matrices WR and W1 are calculated for each given value of parameter 0, the 3
unknown vectors c and d can be found by solving (6.24) and (6.25). To obtain a

correct or reasonably accurate solution, however, we may have to take account of the

ill-condition of the matrices, the noise involved in measurement data or the both. In

the situations of ill-conditioned matrices, the solution may be unstable when there

is a very small noise, or even no noise, just for a computer's finite floating point I
precision. Therefore, some special measures must be taken to solve linear inverse

problems. I
6.3.1 Effects of the 1ll-condition of Matrices

The singularity or ill-condition of a matrix can be formally defined. According I

to the linear algebra theorem [42], any H x N matrix A, whose number of rows M is

greater than or equal to its number of columns N, can be written as the product of

an M x N column-orthogonal matrix U, an N x N diagonal matrix A = [diag(Ai)] with I
non-negative elements, and the transpose of an N x N orthogonal matrix V, that is,

A = U [diag(Ai)] V T 
. (6.38)

If the matrix A is square, N x N say, then the inverse of A is given by I

A-' = V [diag( U)]T . (6.39)

The condition number of a matrix is defined as the ratio of the largest of the Aj's

to the smallest of the Aj's. A matrix is singular if its condition number is infinite,

I
U
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Figure 6.1: Elements Ai of the diagonal matrices decomposed from (a) WR and (b)
Wi with K = 135 and L , = 6 associated with M = 4 and N = 3; (c)
WR and (d) W1 with K = 135 and L1 = 18 associated with M = 6 and
N=6.

and it is ill-conditioned if its condition number is too large, that is, if its reciprocal

approaches the computer machine's floating point precision.

Using this definition to examine the matrices WR and WI in the above ship hull

inverse problem described by (6.24) and (6.25), we unfortunately find that even if

I there are no errors, the matrices may become ill-conditioned even for not very large

3 H and N. As an example, consider the matrices WR and W1 with the basis functions

given in (6.17) and (6.20) and with parameters L = 100 meters, H = 10 meters and

I U = 10 m/s (equivalently, the Froude number F, = 0.32 ). Figure 6.1 illustrates the

elements Ai of the diagonal matrices decomposed from W1 and W, with parameters

K = 135 and L, = 6 associated with M = 4 and N = 3, and with parameters

K = 135 and L1 =18 associated with M =6 and N = 6, respectively. From the

I
I
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Figure 6.2: Kernel function e()Z with F,, = 0.32 and - = 0.10.

figure, it can be seen that the last elements of the diagonal matrices are close to

zero and their reciprocal approaches a very large number, especially for the matrices

with larger dimensions. The condition numbers are calculated as 7.642 x 10" and

6.333 x 10 corresponding to WR and W 1 , respectively, for M = 4 and N = 3, and

1.018 x 1016 and 3.084 x 1017 corresponding to WR and WI, respectively, for M = 6 i

and N = 6. Thus, the matrices in the latter case are considered to be ill-conditioned.

The reason that the matrices become ill-conditioned for the large number of basis

functions is that the number of rows K in the matrices WR and WI increase as M i
and N increase since there must be K > MN for even M or K > M+N for odd M

to avoid an underdetermined solution, but one row's elements are not very different

from another row's as the number of rows increases. For example, let us examine i
the elements of matrix WI in (6.31). From (6.7), (6.9) and (6.10), the elements can

I
I
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* be written as

Wij - Wli,(Ok) -- (- J/,(z)sin (v(O,)z]dx) . (f ,9 3(z)e(8h)zdz) (6.40)

Note that the kernel ei4Gk)z in the second integral varies little with the wave angle

0, especially when 0 is in 00 - 400, as shown in Figure 6.2. It is the smoothness of

the kernel that makes the rows of the matrix (6.31) become almost linear dependent.

From the viewpoint of matrix theory, the rank of the matrix is decreased. Therefore,

n an increase in the number basis functions does not improve, but may worsen the ill-

condition of the inverse problem. To avoid an ill-conditioned problem, the number of

basis functions should be reasonable, although a good approximation for the function

3 of the solution may be achieved for a large number of basis functions.

The condition numbers N of the kernel matrices WR and W1 depend on the

ratio HIL and the Froude number F. since their elements depend on v and p, which

are related to HIL and the Froude number F, , as seen above. Figure 6.3 shows

the relations between N, and HIL and between N, and F, for the given numbers of

basis functions M = 4 and N = 3. The values of 0 are evenly-spaced in the range

[50,80], and K = 135. From the figure, the curves of N, versus HIL are flat; Nc's

have smaller values when H/IL is larger than 0.08 or when F ranges from 0.2 to 0.5.

I These areas with lower condition numbers are typical in real situations.

I 6.3.2 Effects of Data Noise

In practical problems, the amplitude function A($) = AR(O) + j AR(O) is obtained

from direct or indirect measurements; thus there must be some systematic or random

noise or errors associated with them and these errors further cause errors in the

solution c and d of (6.24) and (6.25). The solution c and d will be considered

unstable if the errors in them are unacceptably large. In addition, note that all theI
I
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elements of the matrices WR and Wi are calculated from the integrals (6.8)-(6.10)

which contain the parameters of the ship's length L and draft H. The errors of these

two parameters will cause errors in the matrices, and finally increase the errors in

the solution. This subsection will focus on the error analysis of the solution c and d.

First, measured or observed data are expressed into their true values plus noise.

I It is assumed that the noise on the measured data AR(Ok) and Aj(ek) is additive

noise, thus, AR(8k) and AI(Ok) with noise, denoted as AR(ek) and A41(O), can be

expressed as sums of the true values, AR(Ok) and AI(Ok), and noise AAR(O) and

I AAI(Ok):

AR(Ok) = AR(Ok) + AAR(Ok)

Ai(Ok) = AI(Ok) + AA1(Ok)

When noise is present, the vector forms of (6.26) and (6.27) become

an = aR + AaR (6.41)

IA = a, + &a . (6.42)

U Let AL and &H be the errors in the estimation of the ship's length L and draft H.

It can be proved that AL and &H will cause errors AWR and AWI in the matrices

WR and Wi, and the matrices with errors can be expressed as

w it = WR + AWR (6.43)

*I = W, + AW, (6.44)

For the case where noise or errors are present, (6.24) and (6.25) now become

iR = *W (6.45)

f, = Wrd (6.46)

I
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where the unknowns 6 and d are also written into two parts, their true values and I
errors, i.e., c = c + Ac, and d = d + Ad. Substitution of (6.41) - (6.44) into (6.45)

and (6.46) yields two expressions

Ac = R [AaR - AWR cJ (6.47) 1
Ad = W'[Aai- AWId] (6.48)

Equations (6.47) and (6.48) show that the errors of the solution of (6.45) and (6.46),

Ac and Ad, depend not only directly on the errors of aR, al, WR and WI, but also

on the properties of the inverse of the matrices WR and W 1 . When the matrices 3
are singular or ill-conditioned, the error in the solution will be very large even for a

very very small error in the data aR, al, L and H. m

6.4 Constrained Linear Inversion 3
For ill-conditioned linear problems, neither the direct inversion nor the conven- I

tional least square methods work well [46]. A more powerful method to treat this

kind of problem is the method of constrained linear inversion (CLI), as presented in I

[46]. Before discussing how to apply this method to the ship hull inversion problem, 3
the concept of CLI is briefly stated below.

For a general one dimensional continuous inverse problem, I
y(O) = j Ke(O,a)Z(a)dor (6.49) 3

its discrete form is written as I

y = Kex (6.50)

where Ke is the kernel matrix with dimensions m x n, y = [Yl, Y2, ...Y,] is m measure-

ments of y(O), and x = [z,, X2, ....,] is the n discrete values of the desired function I

X(a).
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To solve the problem, a non-negative scalar measure, q(x), of the deviations

from smoothness in x is introduced. If x is varied until q(x) becomes minimal,

the resulting x may be completely smooth in the sense that q(x) will be zero.

Most measures of non-smoothness are simple quadratic combinations of zi. For

example, q X, - )2 is the sum of the squares of the first differences,

I q = '-2 (-zi+ 2 + 2x,+j - Zi)2 is the sum of the squares of the second differences,

3 and q = E'=_(zi+3- 3xi+2 + 3zi+l - X,) 2 is the sum of the squares of the third differ-

ences. These summations can be written as a form xTHx, and their corresponding

3 matrices H are given in [461 (pp. 124-127). According to the simulations in hull

inverse problems, the measures of smoothness based on third differences are very

effective in reducing the effects of singularities and noise.

The constrained linear inversion solution is obtained by minimizing (Kx -

y)T(K.x - y) with a constraint of q - xTHx, and it can be written as

X = (KTK. + yH) 1 K'y (6.51)

U where -y is a constraining parameter. Obviously, -y = 0 leads to a conventional least

square solution. In a broad sense, thus, CLI can be counted as a least square method

using constraints. The most appropriate value of -y can be determined by computing

the residual IKex - yl. If the residual is appreciably larger than the overall error in

y, then -y is too large, and the solution has been over constrained; if the residual is

smaller than the estimated error in y, the solution has been underconstrained.

3 Returning to the ship hull problem described in (6.24) and (6.25), we note that

the vectors to be determined, c and d, are the coefficients of the summation of basis

functions instead of the hull surface itself. Thus, one possible method is to select the

3 constraints directly based on c and d. In many situations, however, these constraints

may not be easy to select for lack of a priori information about the vectors c andI
U
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d. Usually, few properties of the coefficients are known in advance unlike the hull I
surface function they represent. For this reason, the smoothness measure can be

selected based on the hull surface function C(z, z), which is usually smooth. To tell

these two kinds of smoothness constraints apart, the constraints based on coefficient

vectors are called the coefficient constraints and their quantity is expressed as q,;

the constraints based on hull surfaces are called the surface constraints and their

quantity is expressed as q..

For the surface constraints, the constrained quantity q, can be constituted from

each area element of a hull surface or from each cut line on the hull surface. In the

following, suppose for simplicity that q is constituted from the measure of smoothness

of N, cut lines on a hull surface along the x-direction, and that each line has N,

points. By letting C - Cr(xi, zj), heij- he(Z,, yj) and hij '- ho(zi, yj), the discrete

form of (6.32) becomes

C T =h Tc+hT1 d (6.52)

and the values on the j th line of the hull surface can be expressed as a vector

Zi [Clj C2j ... CNj]
T

= Wejc + toid (6.53)

where matrices 4e, and 9,j have dimension N_ x L1 and N_ x L2, respectively, and

are defined as

'Pej [heij he2 ... heN 1 jIT (6.54) U
IVej [hejj h.2j ...-heNri]T  (6.55)

With these definitions, the smoothness measure for the j th line is

q,(c,d) = THz,

I
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I - cTHjd + dT Hbc + CTHCc + dTHd1 d (6.56)

* where

I H~j ,~ oHbj =q' ej

Thus, the total smoothness measure is given as

N,
q.(c,d) = Eqj(c,d)

j=1

= cTHd + dTHbc + CTHcc + dTHdd (6.57)

I where

Na
Ha = Hj

N,Hb = E Hbj

j=1

N,~HC = E-- Hpi

N.

In general, H =H , thus H.i H~bi and H. = HT . Therefore, if H =H , then

q.(c, d) = 2cTHad + CTrHcc + dT Kid . (6.58)

I =

Having arrived at an expression for q., the constrained linear inverse problem of

the ship hull can be described as

minimize: (WRc - aR)T(WRC - aR) + (WRd - al)T(WRd - al)

holding constant: q.(c,d)I
I
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The solution can be obtained using the Lagrangian multiplier method from

Q(c, d) = (WRc - aR)T(WRc - aR) + (WRd - aI)T(Wtd - a,)

+7q(e, d) . (6.59)

By the rules of matrix calculus, taking OQ cd 0 and - = 0 yields

Wj WR +-He ][ c]= [W~R 1(6.60)
7H WTWi + H d] - WTai]

For a ship hull symmetric in its longitudinal distribution of volume, c = 0 and

aR = 0, and thus (6.60) becomes I

(wTw 1 + H -y) d = WTai . (6.61) I

In many real situations, the surface constraint method may be used together with

the coefficient constraint method to solve the linear inverse problem. For example,

the coefficient constraint method is used to solve (6.60) or (6.61) instead of using the

direct inverse method.

6.5 Application of Bayes Theorem to Inverse Problems

In inverse problems, the observation data contain random noise because they

come from direct or indirect measurements, and thus it is reasonable to consider the

data as random variables. In some cases, the parameters to be predicted from the

observation data are also random variables. Hence, we wish to apply the statistic

estimation theory to inverse problems to obtain an optimum estimation with regard

to some criterion.

Now, consider a general problem

y = f(x) (6.62) I
I
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where y is a vector representing the observed or measured data, and f(x) is a vector

depending on the vector x, which is to be estimated from y. It is assumed that the

functional relation f is known and that y and x are random vectors. If * denotes an

estimate of x based on the observation vector y, then the estimation error is defined

as

C(y) = *(y) - x (6.63)

In the Bayes estimation theory, a scale function of x and k, called the cost function,

is defined, and in many cases it is assumed to depend only on the error of estimate

e. For example, one cost function which is used frequently represents the sum of the

square of each error component and is written as

I c[e(y)] = J(Y)Y) I

I Another cost function assigns zero cost to all errors less than ±4 and assigns a

uniform value to all errors larger than ±4, that is,1 2
Ct[(y)] 1 le(Y) > A2 (6.65)

3 The Bayes estimation is based on the rule that on the average cost is as small as

possible. That is, the Bayes estimate is the estimate that minimizes

E{Ctfe(y)]} = L L 0 Cte(y)]p(x, y)dxdy (6.66)

where E(-) denotes expectation, and p(x, y) is the joint probability density function

I of x and y.

For the above two cost functions, the estimates of x have been computed in

[44]. The minimum mean-square error (MMSE) estimate corresponding to the costI
I
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function in (6.64) is given as

*(y) = E{x/y} (6.67)

which indicates that the MMSE estimate is the conditional mean of x given y. The I
maximum a posteriori (MAP) estimate corresponding to the cost function in (6.65)

is given as the solution of I
in p(x/y) 0 = (6.68) 3

or
e~lnp~yx) + Dn p(x)

,81n p(y/x)__ _x + __x _x=* = 0 . (6.69)

In the MAP estimation, the estimate is the values of x at which the a posteriori

density p(x/y) has its maximum.

In many cases of interest the MAP and MMSE estimates are equal and are

optimum, in particular, for the Gaussian a posteriori density. If we know nothing

about x other than the values of y, then p(x) is a constant, and an estimate *, called

the maximum likelihood (ML) estimate, can be found from the likelihood equation:

,91n p(y/x) 0 = (6.70)

The ML estimate corresponds mathematically to the limiting case of a MAP es-

timate in which the a priori knowledge approaches zero. In the cases where the

unknown vector x is not a random vector, the estimate * is also obtained from the 3
ML estimation in which the likelihood function is maximum.

In our inverse problems, the unknown coefficient vector may be treat as a non-

random vector; thus, the ML estimation will be applied to the ship hull problems. In

the following, it is assumed that the observation vector y has a multivariate Gaussian

I
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I distribution. The Gaussian conditional probability distribution of y given x has the

form:

p(y/x)-- (2r)9I--- exp{- [y- f(x)]S 1 (y - f(x)]} (6.71)

where n is the dimension of y, and ISI denotes the determinant of the n x n covariance

I matrix S, which is defined as

I S = E{(y - E[y])(y - Efy]) T } . (6.72)

Substituting (6.71) into (6.70) yields

1(y - f(x))TS-,(y - f(x)) x=, 0 (6.73)

If a constraint q(x) is included, then the estimate will be found by minimizing

* Q(x) = (y - f(x)) TS- 1 (y - fx)) + _y q(x) (6.74)

The above results will be used in the linear ship hull inverse problem described

by (6.24) and (6.25) and also in the non-linear ship hull inverse problem which will

be discussed in the next subsection. We introduce the following vectors and matrices

for the problem given in (6.24) and (6.25):

C WRI 
d W W,

aR HR H.
Y a HH]

With the above definitions, the problem in (6.24) and (6.25) is described as

y = f(x) = Wx (6.75)

I
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and the constraint in (6.25) is described as

q(x) = XTHtx. (6.76)

Substituting (6.75) and (6.76) into (6.74) and minimizing the resulting Q(x) yields

(WIS-W. + yHt) - W yS-.Y . (6.77)

Finally, the estimate k can be obtained by solving this equation. Specifically, when

the measurement noise in the components of y are uncorrelated and have the same

variance a2 , the covariance matrix is given as S = o2I, where I 's an identity matrix,

and (6.77) becomes
_ I

(WjW. + y'Ht)k = Wly (6.78)

where - °  or2 -. Equation (6.78) is the same as (6.60) except that -Y in (6.60) has

been replaced with -y'. This difference indicates that the choice of the constraining

parameter should include the consideration of the noise variance. If large noise is

involved in data, large constraining parameter -f' is required. U
6.6 Non-Linear inversion I

In the above linear inverse problem, it has been assumed that both the real I
and imaginary parts or, equivalently, both the phase and magnitude of the wave

amplitude function A(O) are well known. In real situations, however, the phase

information of the wave amplitude function may not be available, and only the

magnitude IA(O)I = [AjR(6) + Al( )2J is given. For example, the phase information

may be lost or can not be recovered fully when ship wave spectra are transformed U
from remotely sensed images, or when wave spectra are transformed from wave height

data without knowing the ship position. If the phase information is not available, I
I
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then the inverse problem becomes more complicated since it involves a non-linear

problem.

The non-linear inverse problem can be derived from the previously discussed

linear problem. By squaring both sides of (6.24) and (6.25) for each k (k = 1, ..., K)

and then adding the squared values for each k together, a set of non-linear equations

I is obtained in the form

I A'(Ok) = cTWc + dTW kd (6.79)

I k = 1,2,3,.. -,7K

where

A,,(O) A'2 (k) + A2(Ok)

I T
Wdk -- WIkwT

I wWk [Wa1I.WR22i, W,.2N Wt4,." "I WJt(M2)N, Wt"M'Ik'" WW" Nh]r

I ~ ~ ~ 1 Ik = rwIllk,Wrl2k,.. ,WINk,W131k,.* .. W,( M"-..2)Nk' WIMU k'" ,W1MflNAh

3 To write the above equations in a concise form, let
A.(01)

* A',(Oi)
a.-

A l(OK) j

I W~k [WckWdk]
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The problem described in (6.79) then becomes

XTWmlxX

a, = f(x) = XTW 2X (6.80)

XTWmkX

Equation (6.80) is a general form for the non-linear hull surface inversion. If the I
ship hull surface function can be written in the form of separation of variables as in

(5.69), then the dimension of the vector to be solved can be reduced from M x N to

M + N. This will result in a great reduction of computational efforts, especially for

large M and N. Under the assumption of separation of variables, the hull surface

function C(x, z) can be expressed in the form

M N
C(,z= [) ari(x)] [ E ai(z)] (6.81)

i=1i j=l

where ai and a,j are the coefficients to be determined, and #,(z) and 8i(z) are the

basis functions. Substitution of (6.81) into (6.1) gives the equationsMNI

A'R(0) = F_ a., WxRi(0)I [Za,.j Wzi(0)] (6.82)
i=1 j=1
M N

A'1(0) -" ['ai Wxt(O) E a.j Wzj(0)] (6.83)
i=1 1=1

where WXRi, Wx1i and Wzg have been defined in (6.8)-(6.10). For K values of 0,

there is a set of equations

A' (0k) = (4 wxTk) (xTwzk) (6.84)

A'(0k) = (XT WXlk) (X TWzk) (6.85) 1

where

X T [a, ,a., ... arm
I
I
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X T [a,2,a ,,...azN]

3 wx [WXfl(Ok), WxR2(ek),..., WXRM(Ok)I T

wxz = [(WXn(OL) WX12(8k),..., ' MO)

WZk = [WZl(Ok),WZ2(k),...,WZN(Ok)] . (6.86)

I By squaring both sides of (6.84) and (6.85) for each k (k = 1, ... , K) and then adding

3 the squared values for each k together, a vector form of the non-linear equations is

obtained in the form

I XT WXI X1 4j WZI X2I xTWxlxi4 Wzl x2

I a, = f(x) = xWx2 X1xWZ2X2 (6.87)

3 4TI WXK X4 WZKX 2

where Wxk is an M x M matrix given as

-Xk WXR k WXPj + WXIk WXIk

I and WZk is an N x N matrix given as

WZk W- WTk

The vector equation in (6.87) can be also written in the form

xTW.lxXTWbIX

xTW. 2xxTWb2X (6.88)am = f(x) = (.8

I
XTW KXXTWbKX

I where

I W.k k Wxk MN

0MN¢ 0NN

I
I
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and

Wbk MM OMN

OMN WzkJ

In the above equations, the subscripts of 0 denote the dimension of the null matrices. I
So far, we have established the non-linear equations for hull surface inversion;

the next step we need to do is to solve the equations to obtain x. Using the method

of ML with a constraint q(x), the estimate x can be found by solving the following I
extremun problem:

minimize: (am - f (x))TSl(am - f(x))

holding constant : q(x) . (6.89)

To solve this extremum problem, several methods of non-linear optimization can be U
used.

Before we give examples of ship hull estimations, it is worth to have some discus-

sions about the issue of uniqueness. Like many other inverse problems, the unique- I
ness problem arises in the inversion of a ship's hull shape, that is, whether or not a

hull form can be uniquely determined form a free wave spectrum. We may see this

problem from two aspects, that is, from physical and mathematical aspects. I
In physics, the question is whether different hull shapes have their respective

wave patterns. According to Newman's study on this problem [9], there is one and

only one equivalent source distribution for a given wave system; however, different

physical source distributions can be related to the same equivalent source distribu-

tion, different vessels can be responsible for the same wave system, and hence, in

general, non-uniqueness exists in the hull inversion. In mathematical processing, the 3
uniqueness problem may also arises even if an original inverse problem is unique.

I
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I For example, the non-linear inversion of hull shapes described above may have mul-

tiple solutions due to the non-linear operations; thus it is more complicated than the

above linear inverse problem of hull shapes.

Because of the above reasons, we must apply proper constraints on hull form

to improve problem conditioning. Such constraints may facilitate a unique relation

between a free wave spectrum and a hull form [8]. Although we have no idea about

I a hull's exact shape before we do the inversion for it, we may have some useful

knowledge about man-made ship hulls and use it as constraints. For example, hull

I surface smoothness constraints, closure type constraints and volume constraints are

3 useful in hull inversion. In the following simulations, the hull surface smoothness

constraint, especially the third difference smoothness constraint, is used.

I 6.7 Examples of Ship Hull Estimations

I The previous sections have discussed the problems of a ship hull's linear and

3 non-linear inversion and the methods to solve them. This section evaluates the hull

model given in (6.32), and gives the simulation results of mathematically well defined

I hulls and the Quapaw hull.

I To evaluate the error performance of the estimated hull surface C(X, z), we con-

sider the absolute error =, J - (ij 1, the relative error e, J~i3 - ij I/ijl1, and the

I relative overall r.m.s. residual error which is defined as

40- f f C2(X,z)-( ,z)Idzdz (6.90)

I or, in the discrete form, as

fro - (i(6.91)

There is some difficulty in using the relative error c, to evaluate the performance on

I
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the edges of the hull surface because the true values on the edges approach zero. The I
relative overall r.m.s. residual error can be envisaged as the ratio of the volume of

the error to the volume of the hull.

In addition to the above criterion on hull surface error performance, we may also

consider the residual error due to the inversion operation:

ere& (a] - W )(a - WR ) + (a1 - W a)T(a, - W1 a) . (6.92)

Note that a large error of f,, results in a large error of e,,. However, even a very I
small error of e,., never guarantees a small error of c, that is, c.. may be very large

even for a very small e,,e. I
6.7.1 Evaluation of Hull Surface Models

Before giving the simulation results, we first evaluate the performance of the hull U
surface model. The basis functions selected from (6.17) and (6.20) consist of only

polynomials; thus the hulls defined with polynomials can be exactly expressed when

the numbers of basis functions are sufficiently large. So, we do not consider these U
types of hulls here, but the Wigley-Cosine hull and the Quapaw hull.

For the evaluation of a hull surface model, the model vector is calculated from

(6.32) using the least square method given the values of C(x, z), then the resulting I
model vector x,. = [c.. d,.]T is used to evaluate the hull surface values, Cm(x, z)

hT(z, z)6,,, + hT(x, z)a,,,.

The Wigley-Cosine hull has length L = 100 meters, draft H = 10 meters and

width B = 10 meters. Table 6.1 lists the values of the relative overall r.m.s. residual

error e., for different numbers of basis functions. The relative overall r.m.s. residual

error C., versus the number of basis functions N is shown in Figure 6.4, assuming 3
that the numbers of basis functions in the x- and z-directions are equal, i.e., M = N. I

I



1 141

I
[
I
[

I roM(%) N=I 2 3 4 5 6 7 8 9 10

M = 1 48.82 21.95 18.14 18.14 18.14 18.14 18.14 18.14 18.14 18.14

M = 2 47.18 16.88 11.37 11.37 11.37 11.37 11.37 11.37 11.37 11.37

M = 3 46.23 13.16 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96

M = 4 46.12 12.66 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61

M = 5 46.11 12.63 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33

3 M = 6 46.10 12.57 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

M = 7 46.10 12.57 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

M = 8 46.09 12.56 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

M = 9 46.09 12.56 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

M =10 46.09 12.56 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

i Table 6.1: The Wigley-Cosine hull's relative overall r.m.s. residual error f, in the
hull approximation using M x N basis functions.

I
I
I
I
I
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[
I
I

fro(%) N=1 2 3 4 5 6 7 8 9 10 I
M = 1 45.62 26.16 21.77 20.67 20.50 20.50 20.40 20.28 20.22 20.21 I

M = 2 44.46 22.58 17.16 15.34 14.62 14.41 14.32 14.31 14.24 14.23

M = 3 44.33 20.68 11.87 8.99 7.77 7.26 7.02 6.82 6.69 6.63

M = 4 44.32 20.57 11.04 7.89 6.42 5.75 5.44 5.33 5.23 5.13

M = 5 44.21 20.35 10.58 6.85 5.02 4.07 3.61 3.37 3.28 3.17

M = 6 44.15 20.20 10.32 6.27 4.20 2.99 2.33 1.99 1.85 1.69

M = 7 44.14 20.20 10.29 6.25 4.06 2.78 2.04 1.67 1.45 1.40

M = 8 44.13 20.19 10.28 6.24 3.99 2.67 1.89 1.50 1.25 1.19 I
M = 9 44.13 20.19 10.27 6.22 3.97 2.61 1.81 1.38 1.16 1.05

M =10 44.11 20.16 10.24 6.17 3.91 2.51 1.66 1.17 0.91 0.78

Table 6.2: The Quapaw's relative overall r.m.s. residual error f, in the hull approx- -
imation using M x N basis functions. U

I
I
I
I
I
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Figure 6.4: The relative overall r.m.s. residual error e,. of the Wigley-Cosine hull

and the Quapaw model in the hull approximation using N x N basis
functions.

The Quapaw hull has length L = 4.953 meters, draft H = 0.362 meters and width

3 B = 0.978 meters. Table 6.2 lists the values of the relative overall r.m.s. residual

error e,, for different numbers of basis functions. The curve of e,. versus N with the

condition of M = N is also plotted in Figure 6.4.

From the above analysis, the hulls can be approximately very well for the suffi-

ciently large numbers of the basis functions. For example, eo can be less than 3.0%

I for M = N = 6, and less than 1.0% for M = N = 10. In actual situations, the

3 noise in the wave amplitude function may result in larger error in the recovered hull

surface than this caused by the model approximation.I
I
I
I



144

6.7.2 Estimation of Hull Shape from the Wave Amplitude Function

It is assumed in this subsection that both the real and imaginary parts of the

wave amplitude function are fully available. Thus, the model vectors c and d are

estimated from the linear inversion.

In the following, we consider first a hull defined with polynomials:

B 2I + Xl( _ Z

C(z,z) = B- x E [-1, 1],z E [-1,01 (6.93)

which is more typical than Wigley's parabolic hull. This hull is not symmetrical in

the longitudinal direction, and thus its wave amplitude function contains both real

and imaginary parts.

In the simulation, the values of the wave amplitude function A(O) are calculated

from (5.8) with wave angles 0 in [5° , 800]. The basis functions are selected from(6.17)I

and (6.20). With the basis functions and the given ship length and draft, the kernel

matrices WR and W 1 can be computed. Once the hull model vector x = [c d]T is

determined by solving the linear inversion problem, the hull surface values can be

evaluated from (6.32), i.e., (z, z) = hT(z, z) + hj(z, z)d. In the calculations below,

all the constraints are based on the measures of the sum of the squares of the third

differences.

With the above procedures, simulation results can be obtained. As an example,

it is assumed that the ship speed is U = 10 meters/second, the parameters in (6.93)

are L = 100 meters, H = 10 meters, and B = 10 meters. The dotted line shown in

Figure 6.6 is the wave amplitude function calculated from (5.8).

When the numbers of basis functions are taken as M = 4 and N = 3, the I
constrained ML method gives an exact solution for the containing parameters Y, = 0

and -t. = 10 - . As the numbers of basis functions increase, the error appears in the

| I
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I solution, because the kernel matrices become singular. Figure 6.5 shows the curves

of c,. and e.e versus -t, when M = 6 and N = 6. It can be seen from the figure that

there is a minimum value 1.0557% of e. based on the calculation of 11 x 11 points

on the hull surface, associated with a residual error ,.,e = 7.4 x 10-8. The estimated

hull surface is plotted in Figure 6.7 together with the error surface contour plots of

e, and c,.

3 To observe the effects of the error in the hull length and draft and the noise in

the wave amplitude function on the estimation performance, a couple of assumptions

are made: first that there is 10% error in the ship length and draft, that is, L = 110

and t = 11 meters are used in the computation of the kernel matrices; second, that

there is 10% noise in the real and imaginary parts of the wave amplitude function

I based on the energy, that is, a 10 dB signal to noise ratio. When the noise is assumed

to have a Gaussian distribution with zero mean, the standard deviation is taken as

R~ = /0.1(c~ + E[AR] 2) for the real part, and on = '/0.1(O'Az + E[A1 ]2) for the

3 imaginary part of the wave amplitude function. The wave amplitude function with

noise is shown with the solid lines in Figure 6.6. Figure 6.8 shows the estimated hull

surface together with the error surface contour plots of . and c, given M = N = 6.

3 In the calculation, both the coefficient constraint and surface constraint are used,

with -/, = 10- 1 and - 380. The overall error performances are given as co = 27.2%

I and e..e = 0.482.

3 With the same parameters and conditions, we again do the simulation for the

Wigley-Cosine Hull. The wave amplitude function and the simulation results are

I displayed in Figure 6.9 and Figure 6.10. The overall error performances are given as

3,o = 32.5% and ve. = 0.55, with -tc = 10- 2 and -. = 160. Figure 6.11 shows the

curves of eo and Ce, verses -/,, given - = 10-1 and 10-2, for the modified WigleyI
I
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Figure 6.5: Curves of e, and e, versus y. for the modified Wigley hull with M U
N = 6. No error and noise are present in the input data.

hull described in Eq.(6.93) and the Wigley-Cosine Hull. It is found from the figure 1
that the error of e, has only a small change for different -y with a given .. However,

t,. has obvious variations for different %.
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amplitude function of the modified Wigley hull, given the parameters
L = 100 m, H = 10 m, B = 10 m, and U = 10 rn/s. The dotted linesI represent the wave amplitude function with no noise, and solid lines the
one with 10% noise.
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wave amplitude function of the Wigley-Cosine hull, given the parameters
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represent the wave amplitude function with no noise, and solid lines the
one with 10% noise.
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parameters L = 100 m, H = 10 m, B = 10 m, U = 10 m/s, M = N = 6,
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I 153

6.7.3 Estimation of Hull Shape from the Magnitude of the Wave Ampli-

tude Function

It is assumed in this subsection that only the magnitude of the wave amplitude

I function is available. Thus, the model vectors c and d will be obtained by solving the

extremum problem described in (6.80) and (6.89). In the following, the conjugate

gradient method [42] is used to minimize Q(x) = (a.,-f(x))Ts - 1 (a,-f (X)) +Tq.(x),

where q.(x) is a surface smoothness constraint. This multiple-dimensional extremum

problem may result in multiple solutions, thus the constraint must be considered.

Additionally, an initial vector of x needs to be imposed for the conjugate gradient

method. To improve problem conditioning, the initial values of the coefficient vector

x are obtained using the method as shown in Subsection 6.7.1 from a known hull

I model, given the same hull length and draft and the same numbers of basis functions

which will be used in the inversion. In the examples below, the variables of the hull

surface functions are assumed not be separable, the numbers of basis functions are

taken as M = 6 and N = 6, and all the constraints are based on the measures of the

sum of the squares of the third differences.

The first example is the Wigley-Cosine hull with the same hull parameters as

before but with no noise in the input data. The magnitude of the wave amplitude

function is shown as a dotted line in Figure 6.9(c). The initial values of the coefficient

vector is obtained from the modified Wigley hull given in (6.95), and no constraint is

3 considered. The recovered hull is given in Figure 6.12 together with its error surface

contour plots of c and e,.. The overall error performances are given as c,. = 8.92%

I and e,.. = 0.0568.

The next example is the same Wigley-Cosine hull, but 10% noise is considered.

The magnitude of the wave amplitude function with noise is shown as a solid line inI
I
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EL(%) CH( CAm Ya e froI

0.0 0.0 0.0 0.0 0.0568 8.92 I
0.0 0.0 0.0 100.0 0.2845 9.63

10.0 10.0 0.0 0.0 0.5988 24.74 I
0.0 0.0 10.0 0.0 0.8254 45.32 I

10.0 10.0 10.0 0.1 0.8977 33.47

10.0 10.0 10.0 100.0 0.8977 28.85 I
Table 6.3: The error performance of the Wigley-Cosine Hull estimated from the mag-

nitude of the wave amplitude function with M = N = 6.

Figure 6.10(c). The hull and draft also have a 10% of error. The initial values of the I
coefficient vector is obtained from the modified Wigley hull model given in (6.93),

and the surface constraint is considered with -. = 100. The recovered hull is shown I
in Figure 6.13 together with its error surface contour plots of e. and F,. The overall I
error performances are given as er = 28.85% and ec. = 0.9037. Table 6.3 shows

the simulation results under different conditions, in which CL, EH, CA,, represent the I
relative errors in L, H and Am(O), respectively. I

Finally, we consider the Quapaw hull, a more practical example in which the wave

amplitude function is ca:culated from the spectrum of the wave elevation measured I
from the tow tank as seen in the previous two chapters. A total of 40 data points of I
the magnitude of the wave amplitude functions is used in the hull surface estimation,

corresponding to wave angles in [120, 700]. Figure 6.14 shows the magnitude of the I
wave amplitude function verse wave angles 0 for the data RUN5-A and RUN5-B.

The hull surface estimated from RUN5-A and RUN5-B are shown in Figure 6.15 and I
Figure 6.16 together with the error surface contour plots of e. and f, for M = N = 6.

The overall error performances are given as fro = 34.607% and Cre. = 1.335 for RUN5- I
I
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A, and f,. = 34.662% and f. = 1.250 for RUN5-B. Figure 6.17 shows the c-rves of

i. 0 and Ceo verses N*.

I In the above, we have demonstrated the examples of ship hull estimation from

the wave amplitude functions and their magnitude. From these examples and the

simulations with different parameters and conditions, some comments can be made

* as follows.

(1) When input data are perfect and the hull to be recovered can be exactly ex-

pressed using the basis functions, the exact solution of this hull's surface C(x, z) can

be obtained in the linear inversion with reasonable numbers of basis functions, for

example, M = 4 and N = 3 for the hull given in (6.93). However, there will be errors

i in the solution when the input data are not accurate and have noise.

(2) In linear inverse problems, the estimation performance is usually much more

sensitive to the noise in the wave amplitude function than the errors on the hull's

I length and draft. Larger constraining parameters are needed to- achieve a better

result for larger noise. In addition to a surface constraint, a coefficient constraint is

helpful to achieve a stable solution, especially in a severe noise environment.

(3) The smoothness measure based on the sum of the squares of the third differences

are more effective than some other mea.sures such as those based on the sum of the

squares of the first or second differences.

(4) The error in a hull length L and draft H mainly affects the accuracy of the side

edge and bottom edge of the hull in solutions. In general, the relative error in the

i solutions is larger on the hull's bottom boundary than those on the upper boundary

I and central part.

I

I
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

The previous chapters have presented the study on the estimation of a moving

ship's speed, direction, length and hull shape from its wave spectra. Deep water,

steady waves and the linearized free surface condition are assumed throughout the

study.

The estimation of ship speed and direction has relied on the distinct features of

the Fourier spectrum of the ship genrated waves. The introduction of the concept

of the complex wave elevation has been useful in simplifying the derivation of the

wave amplitude function from one and two dimensional wave spectra. In general, it

is suggested, for high accuracy and the ability to separate background noise, that a

ship's speed and direction be estimated from two dimensional wave spectra. However,

for high accuracy and easy computation, we suggest that the wave amplitude function

be recovered from one dimensional wave spectra.

The extraction of a ship's hull geometry has been based on the relation of the

wave amplitude function and the ship geometry under the assumption of the thin-

ship theory. The theoretical model developed for the wave amplitude function has

explicitly revealed the periodic character of the wave amplitude function and its re-

lation with the ship length. From this model, it is also found that the ship's bow

162
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and stern play a dominant role in the wave amplitude function, and that disconti-

nuities in the hull surface function and its derivatives results in the increase of other

frequency components. The real and imaginary parts and the magnitude of the wave

amplitude function generally appear to be signals which are both magnitude and

angle modulated. The bow and stern's concaveness or convexity have effects on the

I frequency variation, or the distribution of the zero-crossing points of the wave ampli-

tude function, and may result in over- or underestimation of ship length. The three

methods, the spectrum method, zero-crossing method and frequency demodulation

i method, have shown their effectiveness in the estimation of a ship's length.

The extraction of a ship's geometry information is essentially a linear or nonlinear

inverse problem. The ill-conditioning of the kernel matrices is a critical problem in

the linear inversion. It has been shown that the constrained maximum likelihood

method for hull surfaces or/and coefficients is useful in reducing the effects from this

ill-conditioning and the noise present in input data. When the noise components,

present in the data of the wave amplitude function, have independent identical Gaus-

sian distributions, the constrained maximum likelihood method and the constrained

I linear inversion method are equivalent in the case of linear inversion. The uniqueness

3 of the solution is another critical problem in the nonlinear inversion. In addition to

holding constraints, the proper choice of the initial coefficient vector has been shown

to be helpful in finding the desired solution. In the examples given in Chapter 6,

the initial vectors were chosen from the known hull models given the parameters of

length and draft. According to simulation results, high accuracy can be achieved

when the hulls are recovered from the perfect input data. However, the accuracy

decreases, especially at the edges of hulls, when noise is present in input data.

The results from the study show a promising possibility of detecting a moving

I
I
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ship's characteristics through measuring the ship generated wave pattern. For a prac- I
tical application of this technique, however, many problems in theory and practice

still remain to be investigated and solved. The following are some considerations and i
recommendations for further study. I
(1) The estimation of a ship's length and hull shape given in the study is based on the

thin-ship theory. The theory itself has its limitations and weakness. The example of i
the Quapaw hull has shown that the methods developed under the thin-ship theory i
are also suitable for fat ships like the Quapaw, however, further investigation of

other more general types of hulls will be helpful in understanding the performance

and limitation of the methods which have developed.

(2) In the hull inversion, it was assumed that the hull draft was known. However, it

is still an open problem - how to estimate the hull draft from ship wave spectra. i
(3) The nonlinear inversion described in (6.88) for a variable-separable hull function,

having a relatively small size of coefficient vector, has not been tested and needs to

be further evaluated.

(4) According to the results of the hull inversion, constraints are important and

necessary for obtaining a stable solution with a reasonable accuracy in either linear or I
nonlinear problems. Thus, we need to search further for an optimal set of constraints, ]

if they exist, to achieve better performance in the hull estimation.

(5) In the above study, constant ship velocity is assumed, thus only a steady ship i
wave field was considered. However, it may not be always true in practical situations.

The effects of a ship's velocity variation and other unsteady effects on the estimations

have not been studied. To estimate a ship's characteristics from an unsteady ship

wave field, new techniques may need to be developed.

(6) In addition to the techniques developed in this study, another critical problem
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existing in the application of remote sensing of a moving ship and extracting its

characteristics is how to transform successfully, a remotely sensed image or intensity

spectrum to a quantitative wave elevation spectrum. Monaldo and Lyzenga's efforts

in the research on the estimation of the wave slope- and height-variance spectra from

SAR imagery [5] may be helpful in solving this problem, but further study on it is

i still needed.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
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APPENDIX

* WAVE AMPLITUDE FUNCTION WITH ONE

DISCONTINUITY

This appendix gives the integration results with the integral

and the integrand 
(k=fIF.Te"d()

F(x) = 2j_..4, fo-0xz (2)
E * bjz1  for xb 5<1

Substituting (2) into (1) yields the results

U ~AR(K,) = QR1(K.)cos(v - kR1(v)) +QR 2(K.,xb)cos(xbv - ,R2(t7,xb)) (3)

AI(K.) = Qi1 (K.)COS(i' -OIj(V)) +QI 2 (K.,Xb) COS(X&I/ - O 2 (V,X)) (4)

with

_0

QR(K) {E(bupqRj(v, 1)a p(v, -1))I)2 +(5

00O 
00

QR2(K.) = { [Z(b - aj)p&(L,,zb))]12 + [ Z(b, - aj t(, b)]1 (6)
i=O i=O

Q11(K,) = { [(bjp,(#, 1) -ajpj,(v, _1))12 +I=
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i_-o
IZ ]2 00 1 ,

Q12(K.) = j[ b-ajZ)pI.(1.,xb))] + IE(b - aj)qj*(v,Xb)) 2 (8)

t 1 [ E' [biqA.(v, 1) + aiqR.(v, -1)()
4 'R 1 V) ~ErJ- tbip(v, 1) - apx.(v, -1)'

Ea '[ (b, - ai)qA-(~&)(0
~R2(,Xb)= ~ Q(b, - -ai)p,. (v, xb)

= t- 1 [I~obiqz, (v, 1) + aiqzi(v, -)

O(V )=tan-'[ i_ 1 (12)
~~'2 (v, ' (b1 - -ai)pI, (v, Xb)

where pp.(a,x), q&(a,--), pi1(a,x) and q,(a,x) are as dlefined in (5.16)-(5.19).
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